Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Pathway: glycerol degradation to butanol

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Biosynthesis Secondary Metabolites Biosynthesis Alcohols Biosynthesis
Superpathways

Some taxa known to possess this pathway include ? : Clostridium pasteurianum

Expected Taxonomic Range: Bacteria

Summary:
Background

The production of biofuels from renewable feedstock is a growing field, in the face of dwindling supplies and the cost of petroleum-based fuels. The primary alcohol butanol is an excellent example of a good biofuel, and is produced by several species of Clostridium. Butanol is produced by Clostridium acetobutylicum and Clostridium pasteurianum by the process of acetone-butanol-ethanol (ABE) fermentation. However, this system is hampered by productivity limitations. To circumvent these issues Clostridium pasteurianum was chemically mutated to produce copious amounts of butanol using glycerol as the sole carbon source [Malaviya12]. Glycerol is a good feedstock for butanol production because it is inexpensive and readily available, being a byproduct of biodiesel production.

About this Pathway

The butanol biosynthesis pathway from glycerol, depicted here is a naturally occurring one in Clostridium pasteurianum, albeit a system with a low yield of butanol due to the limitations of the naturally occurring ABE fermentation mechanism. Using the same pathway, Clostridium pasteurianum was chemically mutated using N-methyl-N'-nitro-N-nitrosoguanidine (NTG) to become a hyper producer of butanol.

Subpathways: glycerol degradation II

Credits:
Created 24-Feb-2012 by Weerasinghe D , SRI International


References

Malaviya12: Malaviya A, Jang YS, Lee SY (2012). "Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum." Appl Microbiol Biotechnol 93(4);1485-94. PMID: 22052388

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Abbe83: Abbe K, Takahashi S, Yamada T (1983). "Purification and properties of pyruvate kinase from Streptococcus sanguis and activator specificity of pyruvate kinase from oral streptococci." Infect Immun 39(3);1007-14. PMID: 6840832

Alber06: Alber BE, Spanheimer R, Ebenau-Jehle C, Fuchs G (2006). "Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides." Mol Microbiol 61(2);297-309. PMID: 16856937

Albery76: Albery WJ, Knowles JR (1976). "Free-energy profile of the reaction catalyzed by triosephosphate isomerase." Biochemistry 15(25);5627-31. PMID: 999838

Alvarez98: Alvarez M, Zeelen JP, Mainfroid V, Rentier-Delrue F, Martial JA, Wyns L, Wierenga RK, Maes D (1998). "Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. Kinetic and structural properties." J Biol Chem 273(4);2199-206. PMID: 9442062

Ashizawa91: Ashizawa K, McPhie P, Lin KH, Cheng SY (1991). "An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1, 6-bisphosphate." Biochemistry 30(29);7105-11. PMID: 1854723

ASNIS53: ASNIS RE, BRODIE AF (1953). "A glycerol dehydrogenase from Escherichia coli." J Biol Chem 203(1);153-9. PMID: 13069498

Bairoch92: Bairoch A (1992). "PROSITE: a dictionary of sites and patterns in proteins." Nucleic Acids Res 20 Suppl;2013-8. PMID: 1598232

Barker78: Barker HA, Jeng IM, Neff N, Robertson JM, Tam FK, Hosaka S (1978). "Butyryl-CoA:acetoacetate CoA-transferase from a lysine-fermenting Clostridium." J Biol Chem 253(4);1219-25. PMID: 624727

Barker82: Barker HA, Kahn JM, Hedrick L (1982). "Pathway of lysine degradation in Fusobacterium nucleatum." J Bacteriol 152(1);201-7. PMID: 6811551

Beaucamp97: Beaucamp N, Hofmann A, Kellerer B, Jaenicke R (1997). "Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: design and characterization of the separate triosephosphate isomerase." Protein Sci 1997;6(10);2159-65. PMID: 9336838

Beaucamp97a: Beaucamp N, Schurig H, Jaenicke R (1997). "The PGK-TIM fusion protein from Thermotoga maritima and its constituent parts are intrinsically stable and fold independently." Biol Chem 1997;378(7);679-85. PMID: 9278147

Beh93: Beh M, Strauss G, Huber R, Stetter K-O, Fuchs G (1993). "Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus." Arch Microbiol 160: 306-311.

Berg07: Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007). "A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea." Science 318(5857);1782-6. PMID: 18079405

Blamey93: Blamey JM, Adams MW (1993). "Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus." Biochim Biophys Acta 1161(1);19-27. PMID: 8380721

Blamey94: Blamey JM, Adams MW (1994). "Characterization of an ancestral type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima." Biochemistry 1994;33(4);1000-7. PMID: 8305426

Blaschkowski82: Blaschkowski HP, Neuer G, Ludwig-Festl M, Knappe J (1982). "Routes of flavodoxin and ferredoxin reduction in Escherichia coli. CoA-acylating pyruvate: flavodoxin and NADPH: flavodoxin oxidoreductases participating in the activation of pyruvate formate-lyase." Eur J Biochem 123(3);563-9. PMID: 7042345

Boiteux83: Boiteux A, Markus M, Plesser T, Hess B, Malcovati M (1983). "Analysis of progress curves. Interaction of pyruvate kinase from Escherichia coli with fructose 1,6-bisphosphate and calcium ions." Biochem J 1983;211(3);631-40. PMID: 6349612

Botha86: Botha FC, Dennis DT (1986). "Isozymes of phosphoglyceromutase from the developing endosperm of Ricinus communis: isolation and kinetic properties." Arch Biochem Biophys 245(1);96-103. PMID: 3004361

Branlant85: Branlant G, Branlant C (1985). "Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase." Eur J Biochem 1985;150(1);61-6. PMID: 2990926

Branny98: Branny P, de la Torre F, Garel JR (1998). "An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase." Microbiology 144 ( Pt 4);905-14. PMID: 9579064

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Mon Dec 22, 2014, biocyc14.