Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

MetaCyc Pathway: nitric oxide biosynthesis (plants)
Inferred from experiment

Enzyme View:

Pathway diagram: nitric oxide biosynthesis (plants)

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: BiosynthesisMetabolic Regulators BiosynthesisNitric Oxide Biosynthesis

Some taxa known to possess this pathway include : Arabidopsis thaliana, Solanum lycopersicum

Expected Taxonomic Range: Viridiplantae

The discovery of nitric oxide (NO) as a crucial signal in plants has enhanced and redirected our understanding of many processes in plant physiology. There has been a surge in investigative studies to understand the biosynthesis of NO in both plants and animals. Plant NO biosynthesis appears to be more complex than animal NO synthesis, as it includes nitrite and L-arginine-dependent mechanisms. In animals, NO synthases are the main sources of nitric oxide, these complex enzymes oxidize L-arginine to nitric oxide and L-citrulline [Crawford06]. The plant NOS isolated from Arabidopsis thaliana has no sequence similarity with animal NOS, but its role in NO production has been demonstrated. The Arabidopsis mutant AtNOS1 encodes a distinct nitric oxide synthase that regulates growth and hormonal signaling in plants [Guo03].

Evidence has accumulated that the NOS in plants are targeted to plastids and are required for ribosome functions, and also indicates it to be a GTPase [Gas09]. In other studies, it was demonstrated that the disruption of NOS dependent NO synthesis is associated with salt tolerance in plants like Arabidopsis thaliana [Zhao07e].

In Solanum lycopersicum, NOS generated NO acts downstream of auxin and is involved in regulating Fe-deficiency-induced responses as shown in this study [Jin11]. However, the exact relationship between NO and IAA is not yet clear.

Variants: L-citrulline-nitric oxide cycle

Created 27-Jul-2011 by Pujar A, Boyce Thompson Institute


Crawford06: Crawford NM (2006). "Mechanisms for nitric oxide synthesis in plants." J Exp Bot 57(3);471-8. PMID: 16356941

Gas09: Gas E, Flores-Perez U, Sauret-Gueto S, Rodriguez-Concepcion M (2009). "Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism." Plant Cell 21(1);18-23. PMID: 19168714

Guo03: Guo FQ, Okamoto M, Crawford NM (2003). "Identification of a plant nitric oxide synthase gene involved in hormonal signaling." Science 302(5642);100-3. PMID: 14526079

Jin11: Jin CW, Du ST, Shamsi IH, Luo BF, Lin XY (2011). "NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants." J Exp Bot 62(11);3875-84. PMID: 21511908

Zhao07e: Zhao MG, Tian QY, Zhang WH (2007). "Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis." Plant Physiol 144(1);206-17. PMID: 17351048

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Calaycay96: Calaycay JR, Kelly TM, MacNaul KL, McCauley ED, Qi H, Grant SK, Griffin PR, Klatt T, Raju SM, Nussler AK, Shah S, Weidner JR, Williams HR, Wolfe GC, Geller DA, Billiar TR, MacCoss M, Mumford RA, Tocci MJ, Schmidt JA, Wong KK, Hutchinson NI (1996). "Expression and immunoaffinity purification of human inducible nitric-oxide synthase. Inhibition studies with 2-amino-5,6-dihydro-4H-1,3-thiazine." J Biol Chem 271(45);28212-9. PMID: 8910438

Forstermann94: Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994). "Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions." Hypertension 23(6 Pt 2);1121-31. PMID: 7515853

Garvey94: Garvey EP, Tuttle JV, Covington K, Merrill BM, Wood ER, Baylis SA, Charles IG (1994). "Purification and characterization of the constitutive nitric oxide synthase from human placenta." Arch Biochem Biophys 311(2);235-41. PMID: 7515611

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Park96b: Park CS, Gianotti C, Park R, Krishna G (1996). "Neuronal isoform of nitric oxide synthase is expressed at low levels in human retina." Cell Mol Neurobiol 16(4);499-515. PMID: 8879752

Sherman93: Sherman PA, Laubach VE, Reep BR, Wood ER (1993). "Purification and cDNA sequence of an inducible nitric oxide synthase from a human tumor cell line." Biochemistry 32(43);11600-5. PMID: 7692964

Stuehr96: Stuehr DJ (1996). "Purification and properties of nitric oxide synthases." Methods Enzymol 268;324-33. PMID: 8782598

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Sat Apr 30, 2016, biocyc13.