Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Pathway: (R)-cysteate degradation

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Degradation/Utilization/Assimilation Inorganic Nutrients Metabolism Sulfur Compounds Metabolism

Some taxa known to possess this pathway include ? : Paracoccus pantotrophus NKNCYSA

Expected Taxonomic Range: Bacteria

Summary:
L-cysteate is a natural product first found in wool, and is an intermediate in cysteine metabolism involved in, for example, the synthesis of taurine in mammals [Weinstein88]. The compound also serves as a precursor of the cytophagal sulfolipid capnine [White84] and is found extracellularly in spiders' webs [Vollrath90].

Cysteate can serve as a sole source of carbon and energy for the aerobic growth of some bacteria [Stapley70, Rein05], as an electron acceptor for several sulfate-reducing bacteria [Lie96, Lie99], as an electron donor for some nitrate-reducing bacteria [Denger97, Mikosch99], and as the substrate for a fermentation in a sulfate-reducing bacterium [Laue97].

The nitrogen-reducing bacterium Paracoccus pantotrophus NKNCYSA can utilize L-cysteate as a sole source of carbon and energy for growth, with either nitrate or molecular oxygen as terminal electron acceptor [Mikosch99].

An inducible protein was found in extracts of cysteate-grown cells. The protein was purified and found to be 3-sulfolactate sulfo-lyase (encoded by suyA and suyB), an enzyme that catalyzes the conversion of (2R)-3-sulfolactate to pyruvate and bisulfite [Rein05].

Unlike the inducible 3-sulfolactate sulfo-lyase, the other two enzymes in this pathway are constitutive. The first reaction is the constitutive transamination of L-cysteate to 3-sulfopyruvate. It is still unclear whether a unique cysteate:2-oxoglutarate aminotransferase is expressed, or whether the reaction is catalyzed by a protein with another function (e.g. aspartate transaminase, EC 2.6.1.1).

The second reaction is an NAD-dependent reduction of 3-sulfopyruvate to (2R)-3-sulfolactate. This enzyme is constitutive as well. At the time of publication, it was not known whether a unique 3-sulfolactate dehydrogenase exists, or a malate dehydrogenase is involved. However, since then a specific L-2-hydroxycarboxylate dehydrogenase (NAD+) / (2R)-3-sulfolactate dehydrogenase, involved in coenzyme M biosynthesis, has been characterized from the archaeon Methanocaldococcus jannaschii [Graham02], and an NADP+-specific enzyme has been described in Chromohalobacter salexigens DSM 3043 [Denger10]. Both enzymes were named ComC (for CoM biosynthesis).

Credits:
Created 05-Oct-2010 by Caspi R , SRI International


References

Denger10: Denger K, Cook AM (2010). "Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase." Microbiology 156(Pt 3);967-74. PMID: 20007648

Denger97: Denger K, Laue H, Cook AM (1997). "Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp." Microbiology 143 ( Pt 6);1919-24. PMID: 9202468

Graham02: Graham DE, Xu H, White RH (2002). "Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes." J Biol Chem 2002;277(16);13421-9. PMID: 11830598

Laue97: Laue, H., Denger, K., Cook, A. M. (1997). "Fermentation of cysteate by a sulfate-reducing bacterium." Arch Microbiol 168: 210-214.

Lie96: Lie TJ, Pitta T, Leadbetter ER, Godchaux W, Leadbetter JR (1996). "Sulfonates: novel electron acceptors in anaerobic respiration." Arch Microbiol 166(3);204-10. PMID: 8703197

Lie99: Lie TJ, Godchaux W, Leadbetter ER (1999). "Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis." Appl Environ Microbiol 65(10);4611-7. PMID: 10508097

Mikosch99: Mikosch CA, Denger K, Schafer EM, Cook AM (1999). "Anaerobic oxidations of cysteate: degradation via L-cysteate:2-oxoglutarate aminotransferase in Paracoccus pantotrophus." Microbiology 145 ( Pt 5);1153-60. PMID: 10376831

Rein05: Rein U, Gueta R, Denger K, Ruff J, Hollemeyer K, Cook AM (2005). "Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA." Microbiology 151(Pt 3);737-47. PMID: 15758220

Stapley70: Stapley, E. O., Starkey, R. L. (1970). "Decomposition of cysteic acid and taurine by soil microorganisms." J Gen Microbiol 64: 77-84.

Vollrath90: Vollrath, F., Fairbrother, W. J., Williams, R. J. P., Tillinghast, E. K., Bernstein, D. T., Gallagher, K. S., Townley, M. A. (1990). "Compounds in the droplets of the orb spider's viscid spiral." Nature 345: 526-528.

Weinstein88: Weinstein CL, Griffith OW (1988). "Cysteinesulfonate and beta-sulfopyruvate metabolism. Partitioning between decarboxylation, transamination, and reduction pathways." J Biol Chem 263(8);3735-43. PMID: 3346220

White84: White RH (1984). "Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae." J Bacteriol 159(1);42-6. PMID: 6330048

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Denger09: Denger K, Mayer J, Buhmann M, Weinitschke S, Smits TH, Cook AM (2009). "Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase." J Bacteriol 191(18);5648-56. PMID: 19581363

Graupner00: Graupner M, Xu H, White RH (2000). "Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea." J Bacteriol 2000;182(13);3688-92. PMID: 10850983

Graupner01: Graupner M, White RH (2001). "The first examples of (S)-2-hydroxyacid dehydrogenases catalyzing the transfer of the pro-4S hydrogen of NADH are found in the archaea." Biochim Biophys Acta 1548(1);169-73. PMID: 11451450

Guidetti07: Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007). "Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain." J Neurochem 102(1);103-11. PMID: 17442055

Helgadottir07: Helgadottir S, Rosas-Sandoval G, Soll D, Graham DE (2007). "Biosynthesis of phosphoserine in the Methanococcales." J Bacteriol 189(2);575-82. PMID: 17071763

Kearney53: Kearney EB, Singer TP (1953). "Enzymic transformations of L-cysteinesulfinic acid." Biochim Biophys Acta 11(2);276-89. PMID: 13081601

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Shrawder72: Shrawder E, Martinez-Carrion M (1972). "Evidence of phenylalanine transaminase activity in the isoenzymes of aspartate transaminase." J Biol Chem 247(8);2486-92. PMID: 4623131

Sivaraman06: Sivaraman S, Kirsch JF (2006). "The narrow substrate specificity of human tyrosine aminotransferase--the enzyme deficient in tyrosinemia type II." FEBS J 273(9);1920-9. PMID: 16640556

Yagi79: Yagi T, Kagamiyama H, Nozaki M (1979). "Cysteine sulfinate transamination activity of aspartate aminotransferases." Biochem Biophys Res Commun 90(2);447-52. PMID: 389240


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Fri Nov 28, 2014, biocyc12.