MetaCyc Pathway: benzoate biosynthesis II (CoA-independent, non-β-oxidative)
Inferred from experiment

Enzyme View:

Pathway diagram: benzoate biosynthesis II (CoA-independent, non-beta-oxidative)

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Synonyms: benzoate biosynthesis (non-oxidative), benzoic acid biosynthesis

Superclasses: BiosynthesisSecondary Metabolites BiosynthesisPhenylpropanoid Derivatives BiosynthesisBenzenoids BiosynthesisBenzoate Biosynthesis

Some taxa known to possess this pathway include : Antirrhinum majus, Arabidopsis thaliana col, Petunia x hybrida

Expected Taxonomic Range: Embryophyta

General Background

Benzoic acid, derived from phenylalanine, is a precuror to several important benzenoid compounds, including floral scent constituents, such as phenylethylbenzoate, benzylbenzoate methyl benzoate [Boatright04, Azuma02, DAuria02, Negre02]; the defense signaling compounds salicylic acid (SA) and its derivatives [Vlot09, Lu09], and a number of pharmacologically active compounds, such as taxol [Walker00] (rev in [Wildermuth06]). An important step in the creation of benzoic acid is the cleavage of two carbon atoms from the 3-carbon side-chain present on trans-cinnamic acid. At least three different chain-shortening routes have been proposed in plants [Boatright04] and there is evidence that a subset of the different pathways may operate in individual species, and may differentially contribute to benzoic acid biosynthesis within each species. For example, Petunia x hybrida has at least two pathways present (this pathway and benzoate biosynthesis I (CoA-dependent, β-oxidative)), whereas cucumber ( Cucumis sativus) and Nicotiana attenuata seem to lack this variant [Jarvis00] and Hypericum androsaemum relies on a third pathway ( benzoate biosynthesis III (CoA-dependent, non-β-oxidative)) that incorporates elements of the other two variants.

A greater understanding of the metabolic pathways involved in benzoic acid biosynthesis may contribute to genetic engineering efforts aimed at altering floral scents, modifying SA-based defense responses, and increasing the production of pharmaceutically important compounds [Pichersky07, Xiang07a].

Although benzoate biosynthesis has been primarily studied in plants, there is evidence that Streptomyces maritimus bacteria make benzoyl-CoA using the early steps in the benzoate biosynthesis I (CoA-dependent, β-oxidative) pathway [Moore02b].

About This Pathway

In this pathway, the chain shortening is accomplished through the removal of an acetate in the third reaction giving rise to benzaldehyde. Although this compound does not function as an intermediate in the benzoate biosynthesis I (CoA-dependent, β-oxidative) pathway, the characterization of benzaldehyde dehydrogenases in snapdragon and Arabidopsis indicate that benzoic acid can be generated from this precursor in a subset of plant species [Long09, Ibdah09].

PAL, the enzyme catalyzing the first step in this reaction is subject to regulation in many plant species and thus controls the flux through many secondary metabolic biosynthetic pathways. More specific regulation may be achieved in this pathway through fine-tuned expression of downstream enzymes. For example, transcript levels of the snapdragon benzaldehyde dehydrogenase are highest in the parts of the flower that produce scent (the upper and lower petal lobes) and they also show developmental and diurnal changes that are correlated with the production of methylbenzoate and benzoic acid respectively [Long09]. On the other hand benzaldehyde dehydrogenase / benzaldehyde oxidase transcripts seem to be expressed predominantly in developing seeds in Arabdopsis [Ibdah09].

Despite years of study, little is known about the subcellular localization of various components of the benzoic acid biosynthesis pathways. The finding that the snapdragon benzaldehyde dehydrogenase localizes to the mitochondria [Long09] while the Arabidopsis benzaldehyde dehydrogenase / benzaldehyde oxidase lacks any discernable targeting signal and thus likely resides in the cytosol [Ibdah09] may further complicate efforts to study the compartmentalization of this pathway.

Citations: [Abd02]

Variants: benzoate biosynthesis I (CoA-dependent, β-oxidative), benzoate biosynthesis III (CoA-dependent, non-β-oxidative), salicin biosynthesis, salicortin biosynthesis

Unification Links: PlantCyc:PWY-6444

Created 26-Feb-2010 by Dreher KA, TAIR


Abd02: Abd El-Mawla AM, Beerhues L (2002). "Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum." Planta 214(5);727-33. PMID: 11882941

Azuma02: Azuma H, Toyota M, Asakawa Y, Takaso T, Tobe H (2002). "Floral scent chemistry of mangrove plants." J Plant Res 115(1117);47-53. PMID: 12884048

Boatright04: Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004). "Understanding in vivo benzenoid metabolism in petunia petal tissue." Plant Physiol 135(4);1993-2011. PMID: 15286288

DAuria02: D'Auria JC, Chen F, Pichersky E (2002). "Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri." Plant Physiol 130(1);466-76. PMID: 12226525

Ibdah09: Ibdah M, Chen YT, Wilkerson CG, Pichersky E (2009). "An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic Acid." Plant Physiol 150(1);416-23. PMID: 19297586

Jarvis00: Jarvis AP, Schaaf O, Oldham NJ (2000). "3-hydroxy-3-phenylpropanoic acid is an intermediate in the biosynthesis of benzoic acid and salicylic acid but benzaldehyde is not." Planta 212(1);119-26. PMID: 11219576

Long09: Long MC, Nagegowda DA, Kaminaga Y, Ho KK, Kish CM, Schnepp J, Sherman D, Weiner H, Rhodes D, Dudareva N (2009). "Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis." Plant J 59(2);256-65. PMID: 19292760

Lu09: Lu H (2009). "Dissection of salicylic acid-mediated defense signaling networks." Plant Signal Behav 4(8);713-7. PMID: 19820324

Moore02b: Moore BS, Hertweck C, Hopke JN, Izumikawa M, Kalaitzis JA, Nilsen G, O'Hare T, Piel J, Shipley PR, Xiang L, Austin MB, Noel JP (2002). "Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone." J Nat Prod 65(12);1956-62. PMID: 12502351

Negre02: Negre F, Kolosova N, Knoll J, Kish CM, Dudareva N (2002). "Novel S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers." Arch Biochem Biophys 406(2);261-70. PMID: 12361714

Pichersky07: Pichersky E, Dudareva N (2007). "Scent engineering: toward the goal of controlling how flowers smell." Trends Biotechnol 25(3);105-10. PMID: 17234289

Vlot09: Vlot AC, Dempsey DA, Klessig DF (2009). "Salicylic Acid, a multifaceted hormone to combat disease." Annu Rev Phytopathol 47;177-206. PMID: 19400653

Walker00: Walker K, Croteau R (2000). "Taxol biosynthesis: molecular cloning of a benzoyl-CoA:taxane 2alpha-O-benzoyltransferase cDNA from taxus and functional expression in Escherichia coli." Proc Natl Acad Sci U S A 97(25);13591-6. PMID: 11095755

Wildermuth06: Wildermuth MC (2006). "Variations on a theme: synthesis and modification of plant benzoic acids." Curr Opin Plant Biol 9(3);288-96. PMID: 16600669

Xiang07a: Xiang L, Milc JA, Pecchioni N, Chen LQ (2007). "Genetic aspects of floral fragrance in plants." Biochemistry (Mosc) 72(4);351-8. PMID: 17511599

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Hegeman66: Hegeman GD (1966). "Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type." J Bacteriol 91(3);1140-54. PMID: 5929747

Inoue95: Inoue J, Shaw JP, Rekik M, Harayama S (1995). "Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas putida." J Bacteriol 177(5);1196-201. PMID: 7868591

James98: James KD, Williams PA (1998). "ntn genes determining the early steps in the divergent catabolism of 4-nitrotoluene and toluene in Pseudomonas sp. strain TW3." J Bacteriol 1998;180(8);2043-9. PMID: 9555884

Kim01c: Kim SH, Virmani D, Wake K, MacDonald K, Kronstad JW, Ellis BE (2001). "Cloning and disruption of a phenylalanine ammonia-lyase gene from Ustilago maydis." Curr Genet 40(1);40-8. PMID: 11570515

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Vannelli07: Vannelli T, Wei Qi W, Sweigard J, Gatenby AA, Sariaslani FS (2007). "Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi." Metab Eng 9(2);142-51. PMID: 17204442

Wanner95: Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995). "The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana." Plant Mol Biol 1995;27(2);327-38. PMID: 7888622

Xiang02: Xiang L, Moore BS (2002). "Inactivation, complementation, and heterologous expression of encP, a novel bacterial phenylalanine ammonia-lyase gene." J Biol Chem 277(36);32505-9. PMID: 12082112

Xue07: Xue Z, McCluskey M, Cantera K, Sariaslani FS, Huang L (2007). "Identification, characterization and functional expression of a tyrosine ammonia-lyase and its mutants from the photosynthetic bacterium Rhodobacter sphaeroides." J Ind Microbiol Biotechnol 34(9);599-604. PMID: 17602252

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 20.0 (software by SRI International) on Fri May 6, 2016, BIOCYC13A.