Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Pathway: tryptophan degradation IX

Enzyme View:

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Degradation/Utilization/Assimilation Amino Acids Degradation Tryptophan Degradation
Superpathways

Some taxa known to possess this pathway include ? : Bacillus cereus , Burkholderia cenocepacia J2315

Expected Taxonomic Range: Bacteria

Summary:
A new L-tryptophan catabolic pathway has been described in the bacterium Burkholderia cenocepacia J2315. In this pathway, L-tryptophan is converted to aminocarboxymuconate semialdehyde, which is enzymatically degraded to pyruvate and acetyl-CoA via the intermediates 2-aminomuconate and 4-oxaloisocrotonate, a route that is commonly used by bacteria for the degradation of nitroaromatic compounds [Colabroy05]. Several of the enzymes have been cloned and overexpressed, and their activity verified (these enzymes include 3-hydroxyanthranilate 3,4-dioxygenase, aminocarboxymuconate-semialdehyde decarboxylase, 2-aminomuconate semialdehyde dehydrogenase and 2-aminomuconate deaminase). Other enzymes in this pathway are predicted, based on the presence of putative genes encoding them in the same gene clusters that include the verifed enzymes. Such predicted enzymes include 4-oxalocrotonate decarboxylase (EC 4.1.1.77), 2-ket-pentenoate hydratase (EC 4.2.1.80), 2-keto-4-hydroxypentenoate aldolase, and acetaldehyde dehydrogenase. These genes are found in two clusters in Burkholderia cenocepacia J2315, but were found in a single uninterrupted cluster in Bacillus cereus 10897, supporting the notion of a shared metabolic function of these genes in tryptophan metabolism [Colabroy05]. Putative genes encoding the first three reactions in the pathway were also found in the Burkholderia cenocepacia J2315 genome. However, no gene encoding kynurenine-3-monooxygenase (EC 1.13.14.9) was found, suggesting that the reaction is catalyzed by a nonorthologous form of the enzyme in this organism.

This pathway shares the upstream set of reactions (up to 2-aminomuconate) with the tryptophan degradation pathway that is proposed to operate in mammals (see tryptophan degradation III (eukaryotic)). However, the downstream part of the pathway differs from the mammalian pathway, in which aminocarboxymuconate semialdehyde is converted via completely different intermediates, which include 2-oxoadipate and glutaryl-CoA.

Subpathways: 2-amino-3-carboxymuconate semialdehyde degradation to 2-oxopentenoate , tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde , 2-oxopentenoate degradation

Variants: tryptophan degradation I (via anthranilate) , tryptophan degradation II (via pyruvate) , tryptophan degradation III (eukaryotic) , tryptophan degradation IV (via indole-3-lactate) , tryptophan degradation V (side chain pathway) , tryptophan degradation VI (via tryptamine) , tryptophan degradation VII (via indole-3-pyruvate) , tryptophan degradation VIII (to tryptophol) , tryptophan degradation X (mammalian, via tryptamine) , tryptophan degradation XI (mammalian, via kynurenine) , tryptophan degradation XII (Geobacillus)

Credits:
Created 07-Sep-2007 by Caspi R , SRI International


References

Colabroy05: Colabroy KL, Begley TP (2005). "Tryptophan catabolism: identification and characterization of a new degradative pathway." J Bacteriol 187(22);7866-9. PMID: 16267312

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Aemprapa98: Aemprapa S, Williams PA (1998). "Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways." Microbiology 144 ( Pt 5);1387-96. PMID: 9611813

AlberatiGiani97: Alberati-Giani D, Cesura AM, Broger C, Warren WD, Rover S, Malherbe P (1997). "Cloning and functional expression of human kynurenine 3-monooxygenase." FEBS Lett 410(2-3);407-12. PMID: 9237672

Austin09: Austin CJ, Astelbauer F, Kosim-Satyaputra P, Ball HJ, Willows RD, Jamie JF, Hunt NH (2009). "Mouse and human indoleamine 2,3-dioxygenase display some distinct biochemical and structural properties." Amino Acids 36(1);99-106. PMID: 18274832

Basran08: Basran J, Rafice SA, Chauhan N, Efimov I, Cheesman MR, Ghamsari L, Raven EL (2008). "A kinetic, spectroscopic, and redox study of human tryptophan 2,3-dioxygenase." Biochemistry 47(16);4752-60. PMID: 18370401

Batabyal07: Batabyal D, Yeh SR (2007). "Human tryptophan dioxygenase: a comparison to indoleamine 2,3-dioxygenase." J Am Chem Soc 129(50);15690-701. PMID: 18027945

Brady75: Brady FO (1975). "Tryptophan 2,3-dioxygenase: a review of the roles of the heme and copper cofactors in catalysis." Bioinorg Chem 5(2);167-82. PMID: 178384

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

Breton00: Breton J, Avanzi N, Magagnin S, Covini N, Magistrelli G, Cozzi L, Isacchi A (2000). "Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase." Eur J Biochem 267(4);1092-9. PMID: 10672018

Brown86: Brown D, Hitchcock MJ, Katz E (1986). "Purification and characterization of kynurenine formamidase activities from Streptomyces parvulus." Can J Microbiol 32(6);465-72. PMID: 2425918

Burlingame83: Burlingame R, Chapman PJ (1983). "Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli." J Bacteriol 1983;155(1);113-21. PMID: 6345502

Burlingame83a: Burlingame R, Chapman PJ (1983). "Stereospecificity in meta-fission catabolic pathways." J Bacteriol 155(1);424-6. PMID: 6345511

Calderone02: Calderone V, Trabucco M, Menin V, Negro A, Zanotti G (2002). "Cloning of human 3-hydroxyanthranilic acid dioxygenase in Escherichia coli: characterisation of the purified enzyme and its in vitro inhibition by Zn2+." Biochim Biophys Acta 1596(2);283-92. PMID: 12007609

Clark80a: Clark DP, Cronan JE (1980). "Acetaldehyde coenzyme A dehydrogenase of Escherichia coli." J Bacteriol 144(1);179-84. PMID: 6998946

Eaton96: Eaton RW (1996). "p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon." J Bacteriol 1996;178(5);1351-62. PMID: 8631713

Ferrandez97: Ferrandez A, Garcia JL, Diaz E (1997). "Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12." J Bacteriol 1997;179(8);2573-81. PMID: 9098055

Fischer13: Fischer B, Boutserin S, Mazon H, Collin S, Branlant G, Gruez A, Talfournier F (2013). "Catalytic properties of a bacterial acylating acetaldehyde dehydrogenase: evidence for several active oligomeric states and coenzyme A activation upon binding." Chem Biol Interact 202(1-3);70-7. PMID: 23237860

Fukuoka02: Fukuoka S, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, Shibata K (2002). "Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan-niacine pathway and "quinolinate hypothesis"." J Biol Chem 277(38);35162-7. PMID: 12140278

Gupta00: Gupta S, Mat-Jan F, Latifi M, Clark DP (2000). "Acetaldehyde dehydrogenase activity of the AdhE protein of Escherichia coli is inhibited by intermediates in ubiquinone synthesis." FEMS Microbiol Lett 182(1);51-5. PMID: 10612730

Harayama89: Harayama S, Rekik M, Ngai KL, Ornston LN (1989). "Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida." J Bacteriol 171(11);6251-8. PMID: 2681159

Hasegawa00: Hasegawa Y, Muraki T, Tokuyama T, Iwaki H, Tatsuno M, Lau PC (2000). "A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7." FEMS Microbiol Lett 190(2);185-90. PMID: 11034277

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sat Nov 22, 2014, BIOCYC13B.