Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Pathway: fatty acid β-oxidation II (peroxisome)

Enzyme View:

Note: a dashed line (without arrowheads) between two compound names is meant to imply that the two names are just different instantiations of the same compound -- i.e. one may be a specific name and the other a general name, or they may both represent the same compound in different stages of a polymerization-type pathway. This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Synonyms: fatty acid β-oxidation II (plants)

Superclasses: Degradation/Utilization/Assimilation Fatty Acid and Lipids Degradation Fatty Acids Degradation

Some taxa known to possess this pathway include ? : Arabidopsis thaliana col , Cucumis sativus

Expected Taxonomic Range: Viridiplantae

Summary:
The major site for fatty acid β-oxidation in animal cells is the mitochondrion, although partial β-oxidation has also been shown to occur in peroxisomes (see pathway fatty acid β-oxidation VI (peroxisome)) (reviewed in [Van10, Wanders11]). In plant cells, on the other hand, the major sites are the peroxisome and glyoxysome (a specialized peroxisome found only in germinating seeds). The mitochondrion is also active, but is most likely responsible only for degradation of branched-chain fatty acids.

Another major difference lies in the structure of the enzymes. In animal mitochondria, after initial metabolism of long chain acyl-CoAs by membrane-bound enzymes, medium and short chain acyl-CoAs are metabolized in the matrix by separate soluble enzymes. In contrast, plant and animal peroxisomes and plant glyoxysomes contain multifunctional proteins (MFPs) that catalyze multiple steps of the pathway. Plant MFPs appear to have S stereospecificity, whereas the fungal counterparts are R stereospecific (see fatty acid β-oxidation (peroxisome, yeast)). Mammals contain two distinct MFPs, one with S and the other with R stereospecificity (reviewed in [Goepfert07, Poirier06, Van10, Houten10]).

The main biochemical difference between the animal mitochondrial and bacterial β-oxidation pathway (see fatty acid β-oxidation I) and the plant and animal peroxisomal counterpart lies in the first step, which converts an acyl-CoA to a trans-2-enoyl-CoA. In bacteria or animal mitochondria, this reaction is catalyzed by acyl-CoA dehydrogenase. The electrons removed by the oxidation pass through the respiratory chain to oxygen, generating water as the final product. In plant and animal peroxisomes, this reaction is catalyzed by acyl-CoA oxidase. The electrons pass directly to oxygen and produce hydrogen peroxide, which is immediately cleaved by peroxisomal catalases.

It is still debated whether fatty acids are activated to acyl-CoAs prior to or after their transport into peroxisomes. Two peroxisomal acyl-CoA synthetases have been recently identified and characterized from Arabidopsis thaliana col [Fulda02]. Both enzymes are able to activate the full spectrum of fatty acids naturally found in the seed, and both genes are strongly induced during seed germination. These observations suggest that the two peroxisomal enzymes are involved in the fatty acid β-oxidation pathway. Reviewed in [Graham02].

Superpathways: superpathway of glyoxylate cycle and fatty acid degradation

Variants: 9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) , 10-cis-heptadecenoyl-CoA degradation (yeast) , 10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) , 10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) , alkane oxidation , fatty acid α-oxidation I , fatty acid α-oxidation II , fatty acid α-oxidation III , fatty acid β-oxidation (peroxisome, yeast) , fatty acid β-oxidation I , fatty acid β-oxidation III (unsaturated, odd number) , fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent) , fatty acid β-oxidation VI (peroxisome) , oleate β-oxidation , oleate β-oxidation (isomerase-dependent, yeast) , oleate β-oxidation (reductase-dependent, yeast) , oleate β-oxidation (thioesterase-dependent, yeast) , unsaturated, even numbered fatty acid β-oxidation

Unification Links: AraCyc:PWY-5136 , MetaCyc:PWY-5136

Credits:
Created 10-Mar-2006 by Zhang P , TAIR
Revised 19-Nov-2012 by Fulcher CA , SRI International
Reviewed 31-Jul-2013 by Foerster H , Boyce Thompson Institute


References

Adham05: Adham AR, Zolman BK, Millius A, Bartel B (2005). "Mutations in Arabidopsis acyl-CoA oxidase genes reveal distinct and overlapping roles in beta-oxidation." Plant J 41(6);859-74. PMID: 15743450

Begrends88: Begrends, Wilke, Engeland, Kurt, Kindl, Helmut (1988). "Characterization of two forms of the multifunctional protein acting in fatty acid beta-oxidation." Arch Biochem Biophys, 263(1): 161-1691.

Fulda02: Fulda M, Shockey J, Werber M, Wolter FP, Heinz E (2002). "Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation." Plant J 32(1);93-103. PMID: 12366803

Germain01: Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde JP, Bryce JH, Graham IA, Smith SM (2001). "Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid beta-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings." Plant J 28(1);1-12. PMID: 11696182

Goepfert07: Goepfert S, Poirier Y (2007). "Beta-oxidation in fatty acid degradation and beyond." Curr Opin Plant Biol 10(3);245-51. PMID: 17434787

Graham02: Graham IA, Eastmond PJ (2002). "Pathways of straight and branched chain fatty acid catabolism in higher plants." Prog Lipid Res 41(2);156-81. PMID: 11755682

GuhnemannShafer94: Guhnemann-Shafer, Kerstin, Engeland, Kurt, Linder, Dietmar, Kindl, Helmut (1994). "Evidence for domain structures of the trifunctional protein and tetrafunctional protein acting in glyoxysomal fatty acid beta-oxidation." Eur J Biochem, 226: 909-915.

Houten10: Houten SM, Wanders RJ (2010). "A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation." J Inherit Metab Dis 33(5);469-77. PMID: 20195903

Poirier06: Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006). "Peroxisomal beta-oxidation--a metabolic pathway with multiple functions." Biochim Biophys Acta 1763(12);1413-26. PMID: 17028011

Van10: Van Veldhoven PP (2010). "Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism." J Lipid Res 51(10);2863-95. PMID: 20558530

Wanders11: Wanders RJ, Komen J, Ferdinandusse S (2011). "Phytanic acid metabolism in health and disease." Biochim Biophys Acta 1811(9);498-507. PMID: 21683154

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Binstock81: Binstock JF, Schulz H (1981). "Fatty acid oxidation complex from Escherichia coli." Methods Enzymol 1981;71 Pt C;403-11. PMID: 7024730

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

Campbell03: Campbell JW, Morgan-Kiss RM, E Cronan J (2003). "A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway." Mol Microbiol 47(3);793-805. PMID: 12535077

Cao08: Cao W, Liu N, Tang S, Bao L, Shen L, Yuan H, Zhao X, Lu H (2008). "Acetyl-Coenzyme A acyltransferase 2 attenuates the apoptotic effects of BNIP3 in two human cell lines." Biochim Biophys Acta 1780(6);873-80. PMID: 18371312

Dmochowska90: Dmochowska A, Dignard D, Maleszka R, Thomas DY (1990). "Structure and transcriptional control of the Saccharomyces cerevisiae POX1 gene encoding acyl-coenzyme A oxidase." Gene 88(2);247-52. PMID: 2189786

Einerhand91: Einerhand AW, Voorn-Brouwer TM, Erdmann R, Kunau WH, Tabak HF (1991). "Regulation of transcription of the gene coding for peroxisomal 3-oxoacyl-CoA thiolase of Saccharomyces cerevisiae." Eur J Biochem 200(1);113-22. PMID: 1715273

Erdmann94: Erdmann R, Kunau WH (1994). "Purification and immunolocalization of the peroxisomal 3-oxoacyl-CoA thiolase from Saccharomyces cerevisiae." Yeast 10(9);1173-82. PMID: 7754706

Ferdinandusse00: Ferdinandusse S, Denis S, van Berkel E, Dacremont G, Wanders RJ (2000). "Peroxisomal fatty acid oxidation disorders and 58 kDa sterol carrier protein X (SCPx). Activity measurements in liver and fibroblasts using a newly developed method." J Lipid Res 41(3);336-42. PMID: 10706581

Ferdinandusse04: Ferdinandusse S, Denis S, Van Roermund CW, Wanders RJ, Dacremont G (2004). "Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids." J Lipid Res 45(6);1104-11. PMID: 15060085

Ferdinandusse07: Ferdinandusse S, Denis S, Hogenhout EM, Koster J, van Roermund CW, IJlst L, Moser AB, Wanders RJ, Waterham HR (2007). "Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency." Hum Mutat 28(9);904-12. PMID: 17458872

GuhnemannSchafe95: Guhnemann-Schafer K, Kindl H (1995). "Fatty acid beta-oxidation in glyoxysomes. Characterization of a new tetrafunctional protein (MFP III)." Biochim Biophys Acta 1256(2);181-6. PMID: 7766696

Gurvitz01: Gurvitz A, Hiltunen JK, Erdmann R, Hamilton B, Hartig A, Ruis H, Rottensteiner H (2001). "Saccharomyces cerevisiae Adr1p governs fatty acid beta-oxidation and peroxisome proliferation by regulating POX1 and PEX11." J Biol Chem 276(34);31825-30. PMID: 11431484

Harwood94: Harwood CS, Nichols NN, Kim MK, Ditty JL, Parales RE (1994). "Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate." J Bacteriol 176(21);6479-88. PMID: 7961399

Hettema96: Hettema EH, van Roermund CW, Distel B, van den Berg M, Vilela C, Rodrigues-Pousada C, Wanders RJ, Tabak HF (1996). "The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae." EMBO J 15(15);3813-22. PMID: 8670886

Johnson94b: Johnson DR, Knoll LJ, Levin DE, Gordon JI (1994). "Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism." J Cell Biol 127(3);751-62. PMID: 7962057

Johnson94c: Johnson DR, Knoll LJ, Rowley N, Gordon JI (1994). "Genetic analysis of the role of Saccharomyces cerevisiae acyl-CoA synthetase genes in regulating protein N-myristoylation." J Biol Chem 269(27);18037-46. PMID: 8027063

Kameda81: Kameda K, Nunn WD (1981). "Purification and characterization of acyl coenzyme A synthetase from Escherichia coli." J Biol Chem 1981;256(11);5702-7. PMID: 7016858

Kameda85: Kameda K, Imai Y (1985). "Isolation and characterization of the multiple charge isoforms of acyl-CoA synthetase from Escherichia coli." Biochim Biophys Acta 832(3);343-50. PMID: 3907712

Kameda85a: Kameda K, Suzuki LK, Imai Y (1985). "Further purification, characterization and salt activation of acyl-CoA synthetase from Escherichia coli." Biochim Biophys Acta 1985;840(1);29-36. PMID: 3888279

Katsuyama10: Katsuyama Y, Ohnishi Y, Horinouchi S (2010). "Production of dehydrogingerdione derivatives in Escherichia coli by exploiting a curcuminoid synthase from Oryza sativa and a β-oxidation pathway from Saccharomyces cerevisiae." Chembiochem 11(14);2034-41. PMID: 20836122

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Wed Dec 17, 2014, biocyc12.