Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

MetaCyc Pathway: nitrite oxidation
Inferred from experiment

Enzyme View:

Pathway diagram: nitrite oxidation

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Generation of Precursor Metabolites and EnergyChemoautotrophic Energy Metabolism
Generation of Precursor Metabolites and EnergyElectron Transfer

Some taxa known to possess this pathway include : Nitrobacter, Nitrobacter alkalicus, Nitrobacter hamburgensis, Nitrobacter vulgaris, Nitrobacter winogradskyi, Nitrococcus, Nitrospina, Nitrospira moscoviensis

Expected Taxonomic Range: Nitrospinae, Nitrospirae, Proteobacteria

Nitrification, the oxidation of ammonia to nitrate by microorganisms, is a key process in the global nitrogen cycle, resulting in nitrogen loss from ecosystems, eutrophication of surface and ground waters, and the production of atmospherically active trace gases. No known bacteria are capable of carrying out the whole process. Rather, ammonia oxidizers convert ammonia to nitrite (see ammonia oxidation I (aerobic)), while nitrite oxidizers oxidize nitrite to nitrate.

Four genera of nitrite-oxidizing bacteria have been isolated, which include Nitrobacter, Nitrospira , Nitrococcus and Nitrospina [Winogradsky, Watson71, Watson86].

The facultative chemolithotroph Nitrobacter is considered the dominant nitrite oxidizer in freshwater and terrestrial ecosystems, and four species are known: Nitrobacter winogradskyi, Nitrobacter hamburgensis, Nitrobacter vulgaris and Nitrobacter alkalicus. The other three genera are obligate lithoautotrophs, and have been isolated mostly from marine environments, although Nitrospira moscoviensis is a fresh water organism, isolated from a coroded iron pipe. Nitrospira is the dominant nitrite oxidizing genus in sewage sludge, aquaria, and bioreactors [Juretschko98, Schramm98]. Several of the obligate lithoautotrophs, including Nitrospira moscoviensis, have been shown to utilize nitrite as an energy source by the oxidation of nitrite under oxic conditions [Ehrich95].

The key enzyme of nitrite oxidation is nitrite oxidoreductase (NOR), which catalyzes the conversion of nitrite to nitrate in all of the nitrite oxidizers. The enzyme is an iron-sulfur molybdoprotein, and nitrite is transformed at the molybdenum center by a two electron transfer, generating nitrate and molybdenum (IV). Under unaerobic conditions the enzyme is a nitrate reductase, catalyzing the reverse reaction [Meincke92]. The electrons that are released from the nitrite oxidoreductase complex are subsequently transferred to cytochrome c oxidase through several forms of cytochrome c550 [Yamanaka88]. Both soluble and membrane-bound class IA/B cytochrome c-550 proteins were purified and shown to be electron donors for theoxidase [Tanaka82, Nomoto93].

Created 18-Dec-2000 by Pellegrini-Toole A, Marine Biological Laboratory
Revised 13-Jul-2004 by Caspi R, SRI International


Ehrich95: Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (1995). "A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship." Arch Microbiol 164(1);16-23. PMID: 7646315

Juretschko98: Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M (1998). "Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations." Appl Environ Microbiol 1998;64(8);3042-51. PMID: 9687471

Meincke92: Meincke, M., Bock, E., Kastrau, D., Kroneck, P.M.H. "Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role." Arch. Microbiol. 1992;158:127-131.

Nomoto93: Nomoto T, Fukumori Y, Yamanaka T (1993). "Membrane-bound cytochrome c is an alternative electron donor for cytochrome aa3 in Nitrobacter winogradskyi." J Bacteriol 175(14);4400-4. PMID: 8392510

Schramm98: Schramm A, De Beer D, Wagner M, Amann R (1998). "Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor." Appl Environ Microbiol 1998;64(9);3480-5. PMID: 9726900

Tanaka82: Tanaka Y, Fukumori Y, Yamanaka T (1982). "The complete amino acid sequence of Nitrobacter agilis cytochrome c-550." Biochim Biophys Acta 707(1);14-20. PMID: 6291614

Watson71: Watson SW, Waterbury JB "Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis, new genus new species, and Nitrococcus, new genus new species." Archiv. Mikrobiol. 1971;77(3):203-230.

Watson86: Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U "Nitrospira marina new genus new species, a chemolithostrophic nitrite-oxidizing bacterium." Arch. Microbiol. 1986;144(1):1-7.

Winogradsky: Winogradsky S "Contributions a la morphologie des organismes de la nitrification." Arch. Sci. Biol. St. Petersb. 1892;1:86-137.

Yamanaka88: Yamanaka T, Fukumori Y (1988). "The nitrite oxidizing system of Nitrobacter winogradskyi." FEMS Microbiol Rev 4(4);259-70. PMID: 2856189

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Aamand96: Aamand J, Ahl T, Spieck E (1996). "Monoclonal antibodies recognizing nitrite oxidoreductase of Nitrobacter hamburgensis, N. winogradskyi, and N. vulgaris." Appl Environ Microbiol 1996;62(7);2352-5. PMID: 8779572

Aleem65: Aleem MI, Hoch GE, Varner JE (1965). "Water as the source of oxidant and reductant in bacterial chemosynthesis." Proc Natl Acad Sci U S A 54(3);869-73. PMID: 5217465

Ambler91: Ambler RP (1991). "Sequence variability in bacterial cytochromes c." Biochim Biophys Acta 1058(1);42-7. PMID: 1646017

Fukuoka87: Fukuoka M, Fukumori Y, Yamanaka T (1987). "Nitrobacter winogradskyi cytochrome a1c1 is an iron-sulfur molybdoenzyme having hemes a and c." J Biochem (Tokyo) 102(3);525-30. PMID: 2828343

Kirstein93: Kirstein K, Bock E (1993). "Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases." Arch Microbiol 160(6);447-53. PMID: 8297210

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Maron03: Maron PA, Coeur C, Pink C, Clays-Josserand A, Lensi R, Richaume A, Potier P (2003). "Use of polyclonal antibodies to detect and quantify the NOR protein of nitrite oxidizers in complex environments." J Microbiol Methods 53(1);87-95. PMID: 12609727

OKelley70: O'Kelley JC, Becker GE, Nason A (1970). "Characterization of the particulate nitrite oxidase and its component activities from the chemoautotroph Nitrobacter agilis." Biochim Biophys Acta 205(3);409-25. PMID: 4394298

Spieck98: Spieck E, Ehrich S, Aamand J, Bock E (1998). "Isolation and immunocytochemical location of the nitrite-oxidizing system in nitrospira moscoviensis." Arch Microbiol 169(3);225-30. PMID: 9477257

Starkenburg06: Starkenburg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ, Arp DJ, Hickey WJ (2006). "Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255." Appl Environ Microbiol 72(3);2050-63. PMID: 16517654

SundermeyerKlin84: Sundermeyer-Klinger, H., Meyer, W., Warninghoff, B., Bock, E. "Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate reductase system." Arch. Microbiol. 1984;140:153-158.

Tanaka83: Tanaka, Y., Fukumori, Y., Yamanaka, T. "Purification of cytochrome a1c1 from Nitrobacter agilis and characterization of nitrite oxidationsystem of the bacterium." Arch. Microbiol. 1983;135:265-271.

Yamanaka81: Yamanaka T, Kamita Y, Fukumori Y (1981). "Molecular and enzymatic properties of "cytochrome aa3"-type terminal oxidase derived from Nitrobacter agilis." J Biochem (Tokyo) 89(1);265-73. PMID: 6260762

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Sun May 1, 2016, biocyc14.