Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Pathway: arginine degradation X (arginine monooxygenase pathway)

Enzyme View:

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Degradation/Utilization/Assimilation Amino Acids Degradation Arginine Degradation

Some taxa known to possess this pathway include ? : Arthrobacter globiformis , Arthrobacter sp. KUJ8602 , Brevibacterium helvolum , Leishmania donovani , Pimelobacter simplex , Streptomyces griseus , Streptomyces violaceochromogenes

Expected Taxonomic Range: Actinobacteria , Eukaryota

Summary:
Several Actinobacteria, including Streptomyces griseus, Streptomyces violaceochromogenes, Brevibacterium helvolum and Arthrobacter globiformis can utilize L-arginine as the sole source for carbon and nitrogen utilizing a pathway that involves the intermediate 4-guanidinobutyramide [Van62a, Van62, Yorifuji89, Yorifuji95]. The same pathway was also observed in the eukaryotic parasite Leishmania donovani [Bera87].

In this pathway L-arginine is degraded via 4-guanidinobutyramide, 4-guanidinobutyrate, and 4-aminobutanoate, which is eventually degraded via succinate semialdehyde into succinate, and fed into the TCA cycle I (prokaryotic) (see the pathway superpathway of 4-aminobutyrate degradation) [Hatt56, Nguyen66]. ammonia and urea are produced during this process, providing the direct nitrogen source for the organism (urea can be used after it is split by the enzyme urease into ammonia and CO2).

The enzymes involved, arginine 2-monooxygenase, guanidinobutyramidase, and guanidinobutyrate amidinohydrolase, were shown to be induced by L-arginine added to the culture medium.

A commercial process has been developed to produce arginine 2-monooxygenase from Streptomyces griseus in 20 and 200 liter tank fermentors [Delcambe65].

There is also evidence that this pathway can occur in citrus trees (Citrus unshiu) [Kato86], and the intermediate compounds have been found in several other plant species [Kato86a].

Variants: arginine degradation I (arginase pathway) , arginine degradation II (AST pathway) , arginine degradation III (arginine decarboxylase/agmatinase pathway) , arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway) , arginine degradation V (arginine deiminase pathway) , arginine degradation VI (arginase 2 pathway) , arginine degradation VII (arginase 3 pathway) , arginine degradation VIII (arginine oxidase pathway) , arginine degradation IX (arginine:pyruvate transaminase pathway) , arginine degradation XI , arginine degradation XII , citrulline-nitric oxide cycle , D-arginine degradation , superpathway of arginine and ornithine degradation , superpathway of arginine, putrescine, and 4-aminobutyrate degradation

Credits:
Created 13-Jul-1998 by Ying HC , SRI International
Revised 27-Oct-2005 by Caspi R , SRI International


References

Bera87: Bera T (1987). "The gamma-guanidinobutyramide pathway of L-arginine catabolism in Leishmania donovani promastigotes." Mol Biochem Parasitol 23(3);183-92. PMID: 3600696

Delcambe65: Delcambe, L., Pho, D. B., Regnouf, F., Olomucki, A. (1965). "Submerged Production of Arginine Decarboxy-Oxidase in 20-Liter and 2OO-Liter Fermentors." Biotechnol. Bioeng. 7:327-334.

Hatt56: Hatt, J.L., Thi, A.N., Van Thoai, N. (1956). "[Metabolism of guanidine derivatives. V. Enzymic oxidation of arginine to guanidinobutyramide.]." Biochim Biophys Acta 22(1);116-23. PMID: 13373855

Kato86: Kato, T., Yamaga, M., Tsukahara, S. (1986). "Guanidine compounds in fruit trees and their seasonal variations in citrus (Citrus unshiu Marc)." Journal of the Japanese Society for Horticultural Science 55(2):169-173.

Kato86a: Kato, T., Kondo, T., Mizuno, K. (1986). "Occurrence of guanidino compounds in several plants." Soil Science and Plant Nutrition 32(3):487-491.

Nguyen66: Nguyen Van Thoai , Thome-Beau F, Olomucki A (1966). "[Induction and specificity of enzymes of the new catabolic arginine pathway]." Biochim Biophys Acta 115(1);73-80. PMID: 5936244

Van62: Van Thoai, N., Olomucki, A. (1962). "Arginine decarboxy-oxydase I. Caracteres et nature de l'enzyme." Biochimica Biophysica Acta 59:533-544.

Van62a: Van Thoai, N., Thome-Beau, F., Pho, D. B. (1962). "Role biologique de la γ-guanidobutyramide chez Streptomyces griseus." Biochimica Biophysica Acta 63:128-135.

Yorifuji89: Yorifuji, T., Hirabayashi, K., Nagashima, T., Inagaki, N., Shimizu, E., Imada, K., Katsumi, T., Sawamura, S. (1989). "Distribution of the arginine oxygenase pathway among coryneform bacteria." Agric. biol. Chem. 53(4):1103-1110.

Yorifuji95: Yorifuji T, Kaneoke M, Okazaki T, Shimizu E (1995). "Degradation of 2-ketoarginine by guanidinobutyrase in arginine aminotransferase pathway of Brevibacterium helvolum." Biosci Biotechnol Biochem 59(3);512-3. PMID: 7766193

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Arakawa03: Arakawa N, Igarashi M, Kazuoka T, Oikawa T, Soda K (2003). "D-arginase of Arthrobacter sp. KUJ 8602: characterization and its identity with Zn(2+)-guanidinobutyrase." J Biochem (Tokyo) 133(1);33-42. PMID: 12761196

Chou72a: Chou CS, Rodwell VW (1972). "Metabolism of basic amino acids in Pseudomonas putida. -guanidinobutyrate amidinohydrolase." J Biol Chem 247(14);4486-90. PMID: 5043851

Hatt56a: Hatt, J.L., Roche, J., Van Thoai, N., Tran Thi, A.N. (1956). "[Metabolism of guanidine derivatives. VI. Degradation of guanidine derivatives in Streptomyces griseus (Waksman)]." Biochim Biophys Acta 22(2);337-41. PMID: 13382852

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Nakada02: Nakada Y, Itoh Y (2002). "Characterization and regulation of the gbuA gene, encoding guanidinobutyrase in the arginine dehydrogenase pathway of Pseudomonas aeruginosa PAO1." J Bacteriol 184(12);3377-84. PMID: 12029055

Olomucki68: Olomucki A, Pho DB, Lebar R, Delcambe L, Thoai NV (1968). "[Arginine oxygenase (decarboxylating). V. Purification and flavin nature]." Biochim Biophys Acta 151(2);353-66. PMID: 4295160

Romagnoli14: Romagnoli G, Verhoeven MD, Mans R, Fleury Rey Y, Bel-Rhlid R, van den Broek M, Maleki Seifar R, Ten Pierick A, Thompson M, Muller V, Wahl SA, Pronk JT, Daran JM (2014). "An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme." Mol Microbiol. PMID: 24912400

Steward49: Steward, F.C., Thosmpson, J.F., Dent, C.E. (1949). "γ-aminobutyric acid: a constituent of the potato tuber?." Science 110 (2861):439-440.

Van62b: Van Thoai, N., Olomucki, A. (1962). "Arginine decarboxy-oxydase II. Oxydation de la canavanine et de l'homoarginine en β-guanidoxypropionamide et en δ-guanidovaleramide." Biochim. Biophys. Acta 59:545-552.

Yorifuji92: Yorifuji, T, Shimizu, E., Hirata, K., Katsumi, T., Sawamura, S. (1992). Biosci. Biotech. Biochem. 56:773-777.


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sat Nov 22, 2014, biocyc14.