twitter

MetaCyc Compound: succinate

Synonyms: succinic acid, suc, succ, butanedioic acid, ethylenesuccinic acid

Superclasses: an acid all carboxy acids a carboxylate a dicarboxylate a C4-dicarboxylate

Chemical Formula: C4H4O4

Molecular Weight: 116.07 Daltons

Monoisotopic Molecular Weight: 118.026608681 Daltons

succinate compound structure

SMILES: C(C([O-])=O)CC([O-])=O

InChI: InChI=1S/C4H6O4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)(H,7,8)/p-2

InChIKey: InChIKey=KDYFGRWQOYBRFD-UHFFFAOYSA-L

Unification Links: CAS:110-15-6 , ChEBI:30031 , ChemSpider:140973 , HMDB:HMDB00254 , IAF1260:33633 , KEGG:C00042 , KNApSAcK:C00001205 , MetaboLights:MTBLC30031 , PubChem:160419

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -125.16375 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

aerobic respiration I (cytochrome c) , aerobic respiration II (cytochrome c) (yeast) , aerobic respiration III (alternative oxidase pathway) , methylaspartate cycle , succinate to cytochrome bd oxidase electron transfer , succinate to cytochrome bo oxidase electron transfer , superpathway of glyoxylate cycle and fatty acid degradation , TCA cycle I (prokaryotic) , TCA cycle II (plants and fungi) , TCA cycle III (animals) :
succinate[in] + an ubiquinone[membrane] → fumarate[in] + an ubiquinol[membrane]

TCA cycle IV (2-oxoglutarate decarboxylase) , TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) , TCA cycle VII (acetate-producers) :
succinate[in] + an electron-transfer quinone[membrane] → fumarate[in] + an electron-transfer quinol[membrane]

Not in pathways:
succinate[in] + caldariellaquinone[membrane] → fumarate[in] + caldariellaquinol[membrane]

methyl ketone biosynthesis :
a carboxylate + ATP + coenzyme A → an acyl-CoA + AMP + diphosphate

Not in pathways:
an acyl-protein synthetase + a carboxylate + ATP → an acyl-protein thioester + AMP + diphosphate
a carboxylate + GTP + coenzyme A → an acyl-CoA + GDP + phosphate

Reactions known to produce the compound:

(5R)-carbapenem carboxylate biosynthesis :
(3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + oxygen → (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O

2,4-dichlorophenoxyacetate degradation :
2,4-dichlorophenoxyacetate + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + glyoxylate + succinate + CO2

2-aminoethylphosphonate degradation III :
(2-aminoethyl)phosphonate + 2-oxoglutarate + oxygen → (2-amino-1-hydroxyethyl)phosphonate + succinate + CO2

3-oxoadipate degradation :
3-oxoadipate + succinyl-CoA → 3-oxoadipyl-CoA + succinate

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate :
(2Z,4E)-2-hydroxy-6-oxonona-2,4-diene-1,9-dioate + H2O → (2Z)-2-hydroxypenta-2,4-dienoate + succinate + H+

4-aminobutyrate degradation I , 4-aminobutyrate degradation IV , GABA shunt , L-glutamate degradation IV :
succinate semialdehyde + NAD+ + H2O → succinate + NADH + 2 H+

4-aminobutyrate degradation II , 4-hydroxyphenylacetate degradation , nicotine degradation I , nicotine degradation II , TCA cycle IV (2-oxoglutarate decarboxylase) :
succinate semialdehyde + NADP+ + H2O → succinate + NADPH + 2 H+

4-aminobutyrate degradation III :
succinate semialdehyde + NAD(P)+ + H2O → succinate + NAD(P)H + 2 H+

4-chloro-2-methylphenoxyacetate degradation :
4-chloro-2-methylphenoxyacetate + 2-oxoglutarate + oxygen → 2-methyl-4-chlorophenol + glyoxylate + succinate + CO2

4-methylcatechol degradation (ortho cleavage) :
4-methyl-3-oxoadipate + succinyl-CoA → 4-methyl-3-oxoadipyl-CoA + succinate

anaerobic energy metabolism (invertebrates, mitochondrial) :
fumarate[mitochondrial lumen] + a rhodoquinol[CCO-MIT-IM-SPC-CCO-MIT-LUM]succinate[mitochondrial lumen] + a rhodoquinone[CCO-MIT-IM-SPC-CCO-MIT-LUM]

anditomin biosynthesis :
preandiloid C + 2-oxoglutarate + an unknown reduced electron acceptor + oxygen → andiconin + succinate + CO2 + an unknown oxidized electron acceptor + H2O
andilesin C + 2-oxoglutarate + oxygen → anditomin + succinate + CO2 + H2O

anthocyanin biosynthesis (cyanidin 3-O-glucoside) :
leucocyanidin + 2-oxoglutarate + oxygen → a dihydroquercetin + succinate + CO2 + H2O
leucocyanidin + 2-oxoglutarate + oxygen → cyanidin + succinate + CO2 + H+ + 2 H2O

anthocyanin biosynthesis (delphinidin 3-O-glucoside) :
leucodelphinidin + 2-oxoglutarate + oxygen → delphinidin + CO2 + succinate + H+ + 2 H2O

anthocyanin biosynthesis (pelargonidin 3-O-glucoside) :
leucopelargonidin + 2-oxoglutarate + oxygen → pelargonidin + succinate + CO2 + H+ + 2 H2O

apigeninidin 5-O-glucoside biosynthesis :
apiforol + 2-oxoglutarate + oxygen → apigeninidin + succinate + CO2 + 2 H2O

brassicicene C biosynthesis :
fusicocca-2,10(14)-diene-8β,16-diol + 2-oxoglutarate + oxygen → fusicocca-1,10(14)-diene-3,8β,16-triol + succinate + CO2

chrysin biosynthesis :
(2S)-pinocembrin + 2-oxoglutarate + oxygen → chrysin + succinate + CO2 + H2O

clavulanate biosynthesis :
deoxyamidinoproclavaminate + 2-oxoglutarate + oxygen → amidinoproclavaminate + succinate + CO2
dihydroclavaminate + 2-oxoglutarate + oxygen → clavaminate + CO2 + succinate + H2O
proclavaminate + 2-oxoglutarate + oxygen → dihydroclavaminate + CO2 + succinate + H2O

coumarins biosynthesis (engineered) :
feruloyl-CoA + 2-oxoglutarate + oxygen → 6'-hydroxyferuloyl-CoA + succinate + CO2
4-coumaryl-CoA + 2-oxoglutarate + oxygen → 2,4-dihydroxycinnamoyl-CoA + succinate + CO2

Reactions known to both consume and produce the compound:

2-methylcitrate cycle I , 2-methylcitrate cycle II :
(2R,3S)-2-methylisocitrate ↔ succinate + pyruvate

3-hydroxypropanoate cycle :
succinyl-CoA + (S)-malate ↔ succinate + (S)-malyl-CoA

acetate formation from acetyl-CoA III (succinate) , succinate fermentation to butyrate , TCA cycle VII (acetate-producers) :
acetate + succinyl-CoA ↔ acetyl-CoA + succinate

anaerobic energy metabolism (invertebrates, mitochondrial) :
acetate + succinyl-CoA ↔ acetyl-CoA + succinate
succinate + ATP + coenzyme A ↔ succinyl-CoA + ADP + phosphate
propanoyl-CoA + succinate ↔ propanoate + succinyl-CoA

conversion of succinate to propanoate :
propanoyl-CoA + succinate ↔ propanoate + succinyl-CoA

glyoxylate cycle , TCA cycle IV (2-oxoglutarate decarboxylase) :
D-threo-isocitrate ↔ glyoxylate + succinate

incomplete reductive TCA cycle :
fumarate[in] + a menaquinol[membrane]succinate[in] + a menaquinone[membrane]
succinate + ATP + coenzyme A ↔ succinyl-CoA + ADP + phosphate

ketolysis :
succinyl-CoA + acetoacetate ↔ succinate + acetoacetyl-CoA

L-lysine biosynthesis I :
N-succinyl-L,L-2,6-diaminopimelate + H2O ↔ L,L-diaminopimelate + succinate

methylaspartate cycle , pyruvate fermentation to acetate V , pyruvate fermentation to acetate VI , TCA cycle I (prokaryotic) , TCA cycle II (plants and fungi) , TCA cycle VI (obligate autotrophs) :
succinate + ATP + coenzyme A ↔ succinyl-CoA + ADP + phosphate

mixed acid fermentation , NADH to fumarate electron transfer :
fumarate[in] + a menaquinol[membrane]succinate[in] + a menaquinone[membrane]

pyruvate fermentation to propanoate I :
fumarate[in] + a menaquinol[membrane]succinate[in] + a menaquinone[membrane]
propanoyl-CoA + succinate ↔ propanoate + succinyl-CoA

reductive TCA cycle I :
fumarate[in] + a menaquinol[membrane]succinate[in] + a menaquinone[membrane]
succinate + ATP + coenzyme A ↔ succinyl-CoA + ADP + phosphate

reductive TCA cycle II :
fumarate[in] + a menaquinol[membrane]succinate[in] + a menaquinone[membrane]
succinate + ATP + coenzyme A ↔ succinyl-CoA + ADP + phosphate

TCA cycle III (animals) :
succinate + GTP + coenzyme A ↔ succinyl-CoA + GDP + phosphate
succinate + ATP + coenzyme A ↔ succinyl-CoA + ADP + phosphate

TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) :
D-threo-isocitrate ↔ glyoxylate + succinate
succinate + ATP + coenzyme A ↔ succinyl-CoA + ADP + phosphate

TCA cycle VIII (helicobacter) :
succinyl-CoA + acetoacetate ↔ succinate + acetoacetyl-CoA

In Reactions of unknown directionality:

glycolate degradation II :
6 glycolate + H+ = acetate + 2 succinate + 2 CO2 + 4 H2O

Not in pathways:
O-succinyl-L-homoserine + hydrogen sulfide = L-homocysteine + succinate + H+
a [protein] N6,N6-dimethyl-L-lysine + 2-oxoglutarate + oxygen = a [protein] N6-methyl-L-lysine + succinate + formaldehyde + CO2
a 3-oxo acid + succinyl-CoA = a 3-oxoacyl-CoA + succinate
3-hydroxy-3-methylglutarate + succinyl-CoA = (S)-3-hydroxy-3-methylglutaryl-CoA + succinate
succinyl-CoA + (R)-citramalate = succinate + (3R)-citramalyl-CoA
succinyl-CoA + (R)-malate = succinate + (R)-malyl-CoA
succinyl-CoA + citramalate = citramalyl-CoA + succinate
4-oxo-4-sulfanylbutanoate + H2O = succinate + hydrogen sulfide + H+
fumarate + coenzyme B + coenzyme M = succinate + CoB-CoM heterodisulfide
xanthine + 2-oxoglutarate + oxygen = urate + succinate + CO2
succinate + ITP + coenzyme A = succinyl-CoA + IDP + phosphate
succinate + NAD+ = fumarate + NADH + H+

Not in pathways:
a monoamide of a dicarboxylate + H2O = a dicarboxylate + ammonium

Not in pathways:
eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a 2-acyl 1-lyso-phosphatidylcholine[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an aldehyde + an electron-transfer quinone + H2O = a carboxylate + an electron-transfer quinol + H+
a triacyl-sn-glycerol + H2O = a 1,2-diacyl-sn-glycerol + a carboxylate + H+
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an unknown oxidized electron acceptor + H2O = a carboxylate + an unknown reduced electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid

In Transport reactions:
succinate[cytosol] + fumarate[periplasmic space] → fumarate[cytosol] + succinate[periplasmic space] ,
succinate[periplasmic space] + 2 H+[periplasmic space]succinate[cytosol] + 2 H+[cytosol] ,
succinate[cytosol] + L-aspartate[periplasmic space] → L-aspartate[cytosol] + succinate[periplasmic space] ,
D-tartrate[periplasmic space] + succinate[cytosol]succinate[periplasmic space] + D-tartrate[cytosol] ,
succinate[cytosol] + citrate[periplasmic space] → citrate[cytosol] + succinate[periplasmic space] ,
succinate[cytosol] + (S)-malate[periplasmic space] → (S)-malate[cytosol] + succinate[periplasmic space] ,
L-tartrate[periplasmic space] + succinate[cytosol] → L-tartrate[cytosol] + succinate[periplasmic space] ,
succinate[periplasmic space]succinate[cytosol] ,
a C4-dicarboxylate[cytosol] + 2 H+[cytosol]a C4-dicarboxylate[cytosol] + 2 H+[cytosol] ,
a C4-dicarboxylate[periplasmic space] + 3 H+[periplasmic space]a C4-dicarboxylate[cytosol] + 3 H+[cytosol]

In Redox half-reactions:
fumarate[in] + 2 H+[in] + 2 e-[membrane]succinate[in]

Enzymes activated by succinate, sorted by the type of activation, are:

Activator (Mechanism unknown) of: isoflavone-7-O-glucoside-6''-O-malonate malonyltransferase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , prolycopene isomerase [Isaacson04]

Enzymes inhibited by succinate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: aspartate transcarbamylase [Changeux68, Comment 1] , 3-dehydroquinate dehydratase [Chaudhuri86] , glutamate decarboxylase A [Fonda72] , glutamate decarboxylase B [Fonda72] , citramalate hydrolyase , glutamate dehydrogenase (NADP-dependent) [Comment 2] , 2-methyleneglutarate mutase [Kung71] , urocanase [Hug68]

Inhibitor (Uncompetitive) of: isocitrate lyase [Hoyt88, Comment 3]

Inhibitor (Noncompetitive) of: glutamate dehydrogenase (NAD-dependent) [Bonete96, Comment 4]

Inhibitor (Mechanism unknown) of: triose phosphate isomerase [Tomlinson79] , desacetoxyvindoline 4-hydroxylase [De93] , aspartate aminotransferase [Michuda70]

This compound has been characterized as an alternative substrate of the following enzymes: succinyl-CoA-glutarate CoA-transferase , formyl-CoA transferase


References

Bonete90: Bonete MJ, Camacho ML, Cadenas E (1990). "Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase." Biochim Biophys Acta 1990;1041(3);305-10. PMID: 1980084

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Changeux68: Changeux JP, Gerhart JC, Schachman HK (1968). "Allosteric interactions in aspartate transcarbamylase. I. Binding of specific ligands to the native enzyme and its isolated subunits." Biochemistry 7(2);531-8. PMID: 4868539

Chaudhuri86: Chaudhuri S, Lambert JM, McColl LA, Coggins JR (1986). "Purification and characterization of 3-dehydroquinase from Escherichia coli." Biochem J 1986;239(3);699-704. PMID: 2950851

De93: De Carolis E, De Luca V (1993). "Purification, characterization, and kinetic analysis of a 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus." J Biol Chem 268(8);5504-11. PMID: 8449913

Fonda72: Fonda ML (1972). "Glutamate decarboxylase. Substrate specificity and inhibition by carboxylic acids." Biochemistry 1972;11(7);1304-9. PMID: 4552052

Hinderer86: Hinderer W, Koster J, Barz W (1986). "Purfication and properties of a specific isoflavone 7-O-glucoside-6''-malonate malonyestrase from roots of chickpea (Cicer arietinum L.)." Arch Biochem Biophys 248(2);570-8. PMID: 3740841

Hoyt88: Hoyt JC, Robertson EF, Berlyn KA, Reeves HC (1988). "Escherichia coli isocitrate lyase: properties and comparisons." Biochim Biophys Acta 1988;966(1);30-5. PMID: 3291954

Hug68: Hug DH, Roth D, Hunter J (1968). "Regulation of histidine catabolism by succinate in Pseudomonas putida." J Bacteriol 96(2);396-402. PMID: 5674054

Isaacson04: Isaacson T, Ohad I, Beyer P, Hirschberg J (2004). "Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants." Plant Physiol 136(4);4246-55. PMID: 15557094

Kung71: Kung HF, Stadtman TC (1971). "Nicotinic acid metabolism. VI. Purification and properties of alpha-methyleneglutarate mutase (B 12-dependent) and methylitaconate isomerase." J Biol Chem 246(10);3378-88. PMID: 5574401

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Michuda70: Michuda CM, Martinez-Carrion M (1970). "The isozymes of glutamate-aspartate transaminase. Mechanism of inhibition of dicarboxylic acids." J Biol Chem 245(2);262-9. PMID: 4312670

Tomlinson79: Tomlinson J.D., Turner J.F. "Pea seed triose phosphate isomerase." Phytochemistry (1979) 18:1959-1962.

Tsuruta94: Tsuruta H, Vachette P, Sano T, Moody MF, Amemiya Y, Wakabayashi K, Kihara H (1994). "Kinetics of the quaternary structure change of aspartate transcarbamylase triggered by succinate, a competitive inhibitor." Biochemistry 1994;33(33);10007-12. PMID: 8060968


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Sat Apr 18, 2015, biocyc13.