Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Compound: succinate

Synonyms: succinic acid, suc, succ, butanedioic acid, ethylenesuccinic acid

Superclasses: an acid all carboxy acids a carboxylate a dicarboxylate a C4-dicarboxylate

Chemical Formula: C4H4O4

Molecular Weight: 116.07 Daltons

Monoisotopic Molecular Weight: 118.026608681 Daltons

SMILES: C(C([O-])=O)CC([O-])=O

InChI: InChI=1S/C4H6O4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)(H,7,8)/p-2

InChIKey: InChIKey=KDYFGRWQOYBRFD-UHFFFAOYSA-L

Unification Links: CAS:110-15-6 , ChEBI:30031 , ChemSpider:140973 , HMDB:HMDB00254 , IAF1260:33633 , KEGG:C00042 , KNApSAcK:C00001205 , MetaboLights:MTBLC30031 , PubChem:160419

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -125.16375 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

aerobic respiration I (cytochrome c) , aerobic respiration II (cytochrome c) (yeast) , aerobic respiration III (alternative oxidase pathway) , methylaspartate cycle , succinate to cytochrome bd oxidase electron transfer , succinate to cytochrome bo oxidase electron transfer , superpathway of glyoxylate cycle and fatty acid degradation , TCA cycle I (prokaryotic) , TCA cycle II (plants and fungi) , TCA cycle III (animals) :
succinate[in] + an ubiquinone[CCO-OUT-CCO-IN] → fumarate[in] + an ubiquinol[CCO-OUT-CCO-IN]

TCA cycle IV (2-oxoglutarate decarboxylase) , TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) , TCA cycle VII (acetate-producers) :
succinate[in] + an electron-transfer-related quinone[CCO-OUT-CCO-IN] → fumarate[in] + an electron-transfer-related quinol[CCO-OUT-CCO-IN]

Not in pathways:
caldariellaquinone + succinate[in] → caldariellaquinol + fumarate[in]

methyl ketone biosynthesis :
a carboxylate + ATP + coenzyme A → an acyl-CoA + AMP + diphosphate


an acyl-protein synthetase + a carboxylate + ATP → an acyl-protein thioester + AMP + diphosphate
a carboxylate + GTP + coenzyme A → an acyl-CoA + GDP + phosphate

Reactions known to produce the compound:

(5R)-carbapenem carboxylate biosynthesis :
(3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + oxygen → (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O

2,4-dichlorophenoxyacetate degradation :
2,4-dichlorophenoxyacetate + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + glyoxylate + succinate + CO2

2-aminoethylphosphonate degradation III :
(2-aminoethyl)phosphonate + 2-oxoglutarate + oxygen → (2-amino-1-hydroxyethyl)phosphonate + succinate + CO2

3-oxoadipate degradation :
3-oxoadipate + succinyl-CoA → 3-oxoadipyl-CoA + succinate

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate :
(2Z,4E)-2-hydroxy-6-oxonona-2,4-diene-1,9-dioate + H2O → (2Z)-2-hydroxypenta-2,4-dienoate + succinate + H+

4-aminobutyrate degradation , 4-aminobutyrate degradation IV , GABA shunt , glutamate degradation IV :
succinate semialdehyde + NAD+ + H2O → succinate + NADH + 2 H+

4-aminobutyrate degradation II , 4-hydroxyphenylacetate degradation , nicotine degradation I , nicotine degradation II , TCA cycle IV (2-oxoglutarate decarboxylase) :
succinate semialdehyde + NADP+ + H2O → succinate + NADPH + 2 H+

4-aminobutyrate degradation III :
succinate semialdehyde + NAD(P)+ + H2O → succinate + NAD(P)H + 2 H+

4-chloro-2-methylphenoxyacetate degradation :
4-chloro-2-methylphenoxyacetate + 2-oxoglutarate + oxygen → 2-methyl-4-chlorophenol + glyoxylate + succinate + CO2

4-methylcatechol degradation (ortho cleavage) :
4-methyl-3-oxoadipate + succinyl-CoA → 4-methyl-3-oxoadipyl-CoA + succinate

anaerobic energy metabolism (invertebrates, mitochondrial) :
fumarate[mitochondrial lumen] + a rhodoquinol[CCO-MIT-IM-SPC-CCO-MIT-LUM]succinate[mitochondrial lumen] + a rhodoquinone[CCO-MIT-IM-SPC-CCO-MIT-LUM]

anthocyanin biosynthesis (cyanidin 3-O-glucoside) :
leucocyanidin + 2-oxoglutarate + oxygen → a dihydroquercetin + succinate + CO2 + H2O
leucocyanidin + 2-oxoglutarate + oxygen → cyanidin + succinate + CO2 + H+ + 2 H2O

anthocyanin biosynthesis (delphinidin 3-O-glucoside) :
leucodelphinidin + 2-oxoglutarate + oxygen → delphinidin + CO2 + succinate + H+ + 2 H2O

anthocyanin biosynthesis (pelargonidin 3-O-glucoside) :
leucopelargonidin + 2-oxoglutarate + oxygen → pelargonidin + succinate + CO2 + H+ + 2 H2O

apigeninidin 5-O-glucoside biosynthesis :
apiforol + 2-oxoglutarate + oxygen → apigeninidin + succinate + CO2 + 2 H2O

arginine degradation II (AST pathway) :
N2-succinylglutamate + H2O → L-glutamate + succinate

brassicicene C biosynthesis :
fusicocca-2,10(14)-diene-8β,16-diol + 2-oxoglutarate + oxygen → fusicocca-1,10(14)-diene-3,8β,16-triol + succinate + CO2

chrysin biosynthesis :
(2S)-pinocembrin + 2-oxoglutarate + oxygen → chrysin + succinate + CO2 + H2O

clavulanate biosynthesis :
deoxyamidinoproclavaminate + 2-oxoglutarate + oxygen → amidinoproclavaminate + succinate + CO2
dihydroclavaminate + 2-oxoglutarate + oxygen → clavaminate + CO2 + succinate + H2O
proclavaminate + 2-oxoglutarate + oxygen → dihydroclavaminate + CO2 + succinate + H2O

coumarins biosynthesis (engineered) :
feruloyl-CoA + 2-oxoglutarate + oxygen → 6'-hydroxyferuloyl-CoA + succinate + CO2
4-coumaryl-CoA + 2-oxoglutarate + oxygen → 2,4-dihydroxycinnamoyl-CoA + succinate + CO2

D-cycloserine biosynthesis :
L-arginine + 2-oxoglutarate + oxygen → Nω-hydroxy-L-arginine + succinate + CO2

deacetylcephalosporin C biosynthesis :
2-oxoglutarate + penicillin N + oxygen → CO2 + succinate + deacetoxycephalosporin C + H2O
deacetoxycephalosporin C + 2-oxoglutarate + oxygen → deacetylcephalosporin-C + succinate + CO2

dehydrophos biosynthesis :
2-hydroxyethylphosphonate + 2-oxoglutarate + oxygen → 1,2-dihydroxyethylphosphonate + succinate + CO2

DIMBOA-glucoside biosynthesis :
DIBOA-β-D-glucoside + 2-oxoglutarate + oxygen → TRIBOA-β-D-glucoside + succinate + CO2

ethylene biosynthesis II (microbes) :
L-arginine + 2-oxoglutarate + oxygen → (3S)-3-hydroxy-L-arginine + succinate + CO2

ethylene biosynthesis IV :
2-oxoglutarate + L-arginine + oxygen → succinate + CO2 + guanidinium + (S)-1-pyrroline-5-carboxylate + H2O + H+

fatty acid α-oxidation II :
a 3-methyl-branched 2,3,4-saturated fatty acyl-CoA + 2-oxoglutarate + oxygen → a 2-hydroxy-3-methyl-branched 2,3,4-saturated fatty acyl-CoA + succinate + CO2

flavonoid biosynthesis :
(2S)-naringenin + 2-oxoglutarate + oxygen → (+)-dihydrokaempferol + succinate + CO2
(2R)-naringenin + 2-oxoglutarate + oxygen → (-)-dihydrokaempferol + succinate + CO2

flavonoid biosynthesis (in equisetum) :
eriodictyol + 2-oxoglutarate + oxygen → (+)-taxifolin + succinate + CO2
(+)-dihydrokaempferol + 2-oxoglutarate + oxygen → kaempferol + succinate + CO2 + H2O + H+
(+)-taxifolin + 2-oxoglutarate + oxygen → quercetin + succinate + CO2 + H2O
(2S)-naringenin + 2-oxoglutarate + oxygen → (+)-dihydrokaempferol + succinate + CO2
eriodictyol + 2-oxoglutarate + oxygen → luteolin + succinate + CO2 + H2O
(2S)-naringenin + 2-oxoglutarate + oxygen → apigenin + succinate + CO2 + H2O + H+

flavonol biosynthesis :
(+)-dihydrokaempferol + 2-oxoglutarate + oxygen → kaempferol + succinate + CO2 + H2O + H+
(+)-taxifolin + 2-oxoglutarate + oxygen → quercetin + succinate + CO2 + H2O
dihydromyricetin + 2-oxoglutarate + oxygen → myricetin + succinate + CO2 + H2O

FR-900098 and FR-33289 antibiotics biosynthesis :
FR-900098 + 2-oxoglutarate + oxygen → FR-33289 + succinate + CO2

fumitremorgin A biosynthesis :
fumitremorgin B + 2-oxoglutarate + a reduced electron acceptor + 2 oxygen → verruculogen + succinate + CO2 + an oxidized electron acceptor + H2O

fusicoccin A biosynthesis :
fusicocca-2,10(14)-diene-8β,16-diol + 2-oxoglutarate + oxygen → 8β-hydroxyfusicocca-1,10(14)-diene-16-al + succinate + CO2 + H2O

γ-butyrobetaine degradation :
γ-butyrobetaine + 2-oxoglutarate + oxygen → L-carnitine + succinate + CO2

gibberellin biosynthesis I (non C-3, non C-13 hydroxylation) :
gibberellin A24 + 2-oxoglutarate + oxygen → gibberellin A36 + succinate + CO2
gibberellin A9 + 2-oxoglutarate + oxygen → gibberellin A4 + succinate + CO2
gibberellin A25 + 2-oxoglutarate + oxygen → gibberellin A13 + succinate + CO2
gibberellin A15 (open lactone form) + 2-oxoglutarate + oxygen → gibberellin A24 + succinate + CO2 + H2O
gibberellin A24 + 2-oxoglutarate + oxygen → gibberellin A25 + CO2 + succinate + H+
gibberellin A12 + 2-oxoglutarate + oxygen → gibberellin A15 (open lactone form) + CO2 + succinate
gibberellin A24 + 2-oxoglutarate + oxygen → gibberellin A9 + 2 CO2 + succinate + H+

gibberellin biosynthesis II (early C-3 hydroxylation) :
gibberellin A15 (open lactone form) + 2-oxoglutarate + oxygen → gibberellin A37 + succinate + CO2
gibberellin A12 + 2-oxoglutarate + oxygen → gibberellin A14 + succinate + CO2
gibberellin A37 + 2-oxoglutarate + oxygen → gibberellin A36 + succinate + CO2 + H2O
gibberellin A14 + 2-oxoglutarate + oxygen → gibberellin A37 + CO2 + succinate
gibberellin A36 + 2-oxoglutarate + oxygen → gibberellin A4 + succinate + 2 CO2 + H+

gibberellin biosynthesis III (early C-13 hydroxylation) :
gibberellin A20 + 2-oxoglutarate + oxygen → gibberellin A1 + succinate + CO2
gibberellin A19 + 2-oxoglutarate + oxygen → gibberellin A20 + 2 CO2 + succinate + H+
gibberellin A19 + 2-oxoglutarate + oxygen → gibberellin A17 + succinate + CO2 + H+
gibberellin A53 + 2-oxoglutarate + oxygen → gibberellin44 (open lactone form) + CO2 + succinate
gibberellin44 (open lactone form) + 2-oxoglutarate + H+ + oxygen → gibberellin A38 + succinate + CO2 + H2O
gibberellin44 (open lactone form) + 2-oxoglutarate + oxygen → gibberellin A19 + succinate + CO2 + H2O

gibberellin biosynthesis V :
gibberellin A5 + 2-oxoglutarate + oxygen → gibberellin A3 + succinate + CO2
gibberellin A5 + 2-oxoglutarate + oxygen → gibberellin A6 + succinate + CO2

gibberellin inactivation I (2β-hydroxylation) :
gibberellin A4 + 2-oxoglutarate + oxygen → gibberellin A34 + succinate + CO2
gibberellin A20 + 2-oxoglutarate + oxygen → gibberellin A29 + succinate + CO2
gibberellin A29 + 2-oxoglutarate + oxygen → gibberellin A29-catabolite + succinate + CO2 + H+ + H2O
gibberellin A1 + 2-oxoglutarate + oxygen → gibberellin A8 + succinate + CO2
gibberellin A8 + 2-oxoglutarate + oxygen → gibberellin A8-catabolite + succinate + CO2 + H+ + H2O
gibberellin A9 + 2-oxoglutarate + oxygen → gibberellin A51 + succinate + CO2
gibberellin A51 + 2-oxoglutarate + oxygen → gibberellin A51-catabolite + succinate + CO2 + H+ + H2O
gibberellin A34 + 2-oxoglutarate + oxygen → gibberellin A34-catabolite + succinate + CO2 + H+ + H2O
gibberellin A44 (closed lactone form) + 2-oxoglutarate + 2 H+ + oxygen → gibberellin A98 + succinate + CO2
gibberellin A12 + 2-oxoglutarate + oxygen → gibberellin A110 + succinate + CO2
gibberellin A53 + 2-oxoglutarate + oxygen → gibberellin A97 + succinate + CO2

hydroxylated mugineic acid phytosiderophore biosynthesis :
2'-deoxymugineate + 2-oxoglutarate + oxygen → mugineate + succinate + CO2 + H+
mugineate + 2-oxoglutarate + oxygen → 3-epihydroxymugineate + succinate + CO2
2'-deoxymugineate + 2-oxoglutarate + oxygen → 3-epihydroxy-2'-deoxymugineate + succinate + CO2 + H+

hyoscyamine and scopolamine biosynthesis :
L-hyoscyamine + 2-oxoglutarate + oxygen → (6S)-hydroxyhyoscyamine + succinate + CO2
(6S)-hydroxyhyoscyamine + 2-oxoglutarate + oxygen → scopolamine + succinate + CO2 + H+ + H2O

isoflavonoid biosynthesis II :
(2S)-naringenin + 2-oxoglutarate + oxygen → apigenin + succinate + CO2 + H2O + H+

itaconate degradation :
succinyl-CoA + itaconate → succinate + itaconyl-CoA

kanamycin biosynthesis :
kanamycin B + 2-oxoglutarate + oxygen → 2'-dehydrokanamycin A + succinate + ammonium + CO2

L-carnitine biosynthesis :
N6,N6,N6-trimethyl-L-lysine + 2-oxoglutarate + oxygen → 3-hydroxy-N6,N6,N6-trimethyl-L-lysine + succinate + CO2
γ-butyrobetaine + 2-oxoglutarate + oxygen → L-carnitine + succinate + CO2

leucodelphinidin biosynthesis :
(2S)-dihydrotricetin + 2-oxoglutarate + oxygen → dihydromyricetin + succinate + CO2

leucopelargonidin and leucocyanidin biosynthesis :
eriodictyol + 2-oxoglutarate + oxygen → (+)-taxifolin + succinate + CO2

luteolin biosynthesis :
eriodictyol + 2-oxoglutarate + oxygen → luteolin + succinate + CO2 + H2O
(2S)-naringenin + 2-oxoglutarate + oxygen → apigenin + succinate + CO2 + H2O + H+

luteolinidin 5-O-glucoside biosynthesis :
luteoforol + 2-oxoglutarate + oxygen + H+ → luteolinidin + succinate + CO2 + 2 H2O

lysine degradation IV , lysine degradation V , lysine degradation X :
glutarate + succinyl-CoA → glutaryl-CoA + succinate

m-xylene degradation (anaerobic) :
(3-methylbenzyl)succinate + succinyl-CoA → (3-methylbenzyl)succinyl-CoA + succinate

methionine biosynthesis I :
L-cysteine + O-succinyl-L-homoserine → succinate + L-cystathionine + H+

methylaspartate cycle :
mesaconate + succinyl-CoA → 2-methylfumaryl-CoA + succinate

morphine biosynthesis :
oripavine + 2-oxoglutarate + oxygen → morphinone + formaldehyde + succinate + CO2
thebaine + 2-oxoglutarate + oxygen → oripavine + formaldehyde + succinate + CO2
thebaine + 2-oxoglutarate + oxygen → neopinone + formaldehyde + succinate + CO2
codeine + 2-oxoglutarate + oxygen → morphine + formaldehyde + succinate + CO2

Reactions known to both consume and produce the compound:

2-methylcitrate cycle I , 2-methylcitrate cycle II :
(2R,3S)-2-methylisocitrate ↔ succinate + pyruvate

3-hydroxypropanoate cycle :
succinyl-CoA + (S)-malate ↔ succinate + (S)-malyl-CoA

acetate formation from acetyl-CoA III (succinate) , succinate fermentation to butyrate , TCA cycle VII (acetate-producers) :
acetate + succinyl-CoA ↔ acetyl-CoA + succinate

anaerobic energy metabolism (invertebrates, mitochondrial) :
acetate + succinyl-CoA ↔ acetyl-CoA + succinate
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]
propanoyl-CoA + succinate ↔ propanoate + succinyl-CoA

conversion of succinate to propionate :
propanoyl-CoA + succinate ↔ propanoate + succinyl-CoA

glycerol-3-phosphate to fumarate electron transfer , mixed acid fermentation , NADH to fumarate electron transfer :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]

glyoxylate cycle , TCA cycle IV (2-oxoglutarate decarboxylase) :
D-threo-isocitrate ↔ glyoxylate + succinate

incomplete reductive TCA cycle :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

ketolysis :
succinyl-CoA + acetoacetate ↔ succinate + acetoacetyl-CoA

lysine biosynthesis I :
N-succinyl-L,L-2,6-diaminopimelate + H2O ↔ L,L-diaminopimelate + succinate

methylaspartate cycle , pyruvate fermentation to acetate V , pyruvate fermentation to acetate VI , TCA cycle I (prokaryotic) , TCA cycle II (plants and fungi) , TCA cycle VI (obligate autotrophs) :
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

pyruvate fermentation to propionate I :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]
propanoyl-CoA + succinate ↔ propanoate + succinyl-CoA

reductive TCA cycle I :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

reductive TCA cycle II :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

TCA cycle III (animals) :
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]
succinate[mitochondrial lumen] + GTP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + GDP[mitochondrial lumen] + phosphate[mitochondrial lumen]

TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) :
D-threo-isocitrate ↔ glyoxylate + succinate
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

TCA cycle VIII (helicobacter) :
succinyl-CoA + acetoacetate ↔ succinate + acetoacetyl-CoA
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]

toluene degradation to benzoyl-CoA (anaerobic) :
(R)-2-benzylsuccinate + succinyl-CoA ↔ (R)-benzylsuccinyl-CoA + succinate

Not in pathways:
succinyl-CoA + (S)-citramalate ↔ (3S)-citramalyl-CoA + succinate

sphingolipid recycling and degradation (yeast) :
a dihydroceramide + H2O ↔ sphinganine + a carboxylate

In Reactions of unknown directionality:

glycolate degradation II :
6 glycolate + H+ = acetate + 2 succinate + 2 CO2 + 4 H2O

Not in pathways:
O-succinyl-L-homoserine + hydrogen sulfide = L-homocysteine + succinate + H+
a [protein] N6,N6-dimethyl-L-lysine + 2-oxoglutarate + oxygen = a [protein] N6-methyl-L-lysine + succinate + formaldehyde + CO2
a 3-oxo acid + succinyl-CoA = a 3-oxoacyl-CoA + succinate
3-hydroxy-3-methylglutarate + succinyl-CoA = (S)-3-hydroxy-3-methylglutaryl-CoA + succinate
succinyl-CoA + (R)-citramalate = succinate + (3R)-citramalyl-CoA
succinyl-CoA + (R)-malate = succinate + (R)-malyl-CoA
succinyl-CoA + citramalate = citramalyl-CoA + succinate
4-oxo-4-sulfanylbutanoate + H2O = succinate + hydrogen sulfide + H+
fumarate + coenzyme M + coenzyme B = succinate + CoB-CoM heterodisulfide
xanthine + 2-oxoglutarate + oxygen = urate + succinate + CO2
succinate + ITP + coenzyme A = succinyl-CoA + IDP + phosphate
succinate + NAD+ = fumarate + NADH + H+


a monoamide of a dicarboxylate + H2O = ammonium + a dicarboxylate


eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
an aldehyde + pyrroloquinoline quinone + H2O = a carboxylate + pyrroloquinoline quinol + H+
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized electron acceptor + H2O = a carboxylate + a reduced electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an N-acylated aliphatic-L-amino acid + H2O = a carboxylate + an aliphatic L-amino acid
a D-hexose + an acyl phosphate = a D-hexose-phosphate + a carboxylate
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an N-acyl-D-glutamate + H2O = a carboxylate + D-glutamate
an anilide + H2O = aniline + a carboxylate + H+
a 5'-acylphosphoadenosine + H2O = a carboxylate + AMP + 2 H+
a 3-acylpyruvate + H2O = a carboxylate + pyruvate + H+
an N6acyl-L-lysine + H2O = a carboxylate + L-lysine
an N-acyl-D-aspartate + H2O = a carboxylate + D-aspartate

In Transport reactions:
succinate[cytosol] + fumarate[periplasmic space] → fumarate[cytosol] + succinate[periplasmic space] ,
succinate[periplasmic space] + 2 H+[periplasmic space]succinate[cytosol] + 2 H+[cytosol] ,
succinate[cytosol] + L-aspartate[periplasmic space] → L-aspartate[cytosol] + succinate[periplasmic space] ,
D-tartrate[periplasmic space] + succinate[cytosol]succinate[periplasmic space] + D-tartrate[cytosol] ,
succinate[cytosol] + citrate[periplasmic space] → citrate[cytosol] + succinate[periplasmic space] ,
succinate[cytosol] + (S)-malate[periplasmic space] → (S)-malate[cytosol] + succinate[periplasmic space] ,
L-tartrate[periplasmic space] + succinate[cytosol] → L-tartrate[cytosol] + succinate[periplasmic space] ,
succinate[periplasmic space]succinate[cytosol] ,
a C4-dicarboxylate[cytosol] + 2 H+[cytosol]a C4-dicarboxylate[cytosol] + 2 H+[cytosol] ,
a C4-dicarboxylate[periplasmic space] + 3 H+[periplasmic space]a C4-dicarboxylate[cytosol] + 3 H+[cytosol]

In Redox half-reactions:
fumarate[in] + 2 H+[in] + 2 e-succinate[in]

Enzymes activated by succinate, sorted by the type of activation, are:

Activator (Mechanism unknown) of: isoflavone-7-O-glucoside-6''-O-malonate malonyltransferase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , prolycopene isomerase [Isaacson04]

Enzymes inhibited by succinate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: aspartate transcarbamylase [Changeux68, Comment 1] , 3-dehydroquinate dehydratase [Chaudhuri86] , glutamate decarboxylase A [Fonda72] , glutamate decarboxylase B [Fonda72] , citramalate hydrolyase , glutamate dehydrogenase (NADP-dependent) [Comment 2] , 2-methyleneglutarate mutase [Kung71] , urocanase [Hug68]

Inhibitor (Uncompetitive) of: isocitrate lyase [Hoyt88, Comment 3]

Inhibitor (Noncompetitive) of: glutamate dehydrogenase (NAD-dependent) [Bonete96, Comment 4]

Inhibitor (Mechanism unknown) of: triose phosphate isomerase [Tomlinson79] , desacetoxyvindoline 4-hydroxylase [De93] , aspartate aminotransferase [Michuda70]


References

Bonete90: Bonete MJ, Camacho ML, Cadenas E (1990). "Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase." Biochim Biophys Acta 1990;1041(3);305-10. PMID: 1980084

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Changeux68: Changeux JP, Gerhart JC, Schachman HK (1968). "Allosteric interactions in aspartate transcarbamylase. I. Binding of specific ligands to the native enzyme and its isolated subunits." Biochemistry 7(2);531-8. PMID: 4868539

Chaudhuri86: Chaudhuri S, Lambert JM, McColl LA, Coggins JR (1986). "Purification and characterization of 3-dehydroquinase from Escherichia coli." Biochem J 1986;239(3);699-704. PMID: 2950851

De93: De Carolis E, De Luca V (1993). "Purification, characterization, and kinetic analysis of a 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus." J Biol Chem 268(8);5504-11. PMID: 8449913

Fonda72: Fonda ML (1972). "Glutamate decarboxylase. Substrate specificity and inhibition by carboxylic acids." Biochemistry 1972;11(7);1304-9. PMID: 4552052

Hinderer86: Hinderer W, Koster J, Barz W (1986). "Purfication and properties of a specific isoflavone 7-O-glucoside-6''-malonate malonyestrase from roots of chickpea (Cicer arietinum L.)." Arch Biochem Biophys 248(2);570-8. PMID: 3740841

Hoyt88: Hoyt JC, Robertson EF, Berlyn KA, Reeves HC (1988). "Escherichia coli isocitrate lyase: properties and comparisons." Biochim Biophys Acta 1988;966(1);30-5. PMID: 3291954

Hug68: Hug DH, Roth D, Hunter J (1968). "Regulation of histidine catabolism by succinate in Pseudomonas putida." J Bacteriol 96(2);396-402. PMID: 5674054

Isaacson04: Isaacson T, Ohad I, Beyer P, Hirschberg J (2004). "Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants." Plant Physiol 136(4);4246-55. PMID: 15557094

Kung71: Kung HF, Stadtman TC (1971). "Nicotinic acid metabolism. VI. Purification and properties of alpha-methyleneglutarate mutase (B 12-dependent) and methylitaconate isomerase." J Biol Chem 246(10);3378-88. PMID: 5574401

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Michuda70: Michuda CM, Martinez-Carrion M (1970). "The isozymes of glutamate-aspartate transaminase. Mechanism of inhibition of dicarboxylic acids." J Biol Chem 245(2);262-9. PMID: 4312670

Tomlinson79: Tomlinson J.D., Turner J.F. "Pea seed triose phosphate isomerase." Phytochemistry (1979) 18:1959-1962.

Tsuruta94: Tsuruta H, Vachette P, Sano T, Moody MF, Amemiya Y, Wakabayashi K, Kihara H (1994). "Kinetics of the quaternary structure change of aspartate transcarbamylase triggered by succinate, a competitive inhibitor." Biochemistry 1994;33(33);10007-12. PMID: 8060968


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Mon Dec 22, 2014, biocyc14.