Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: succinate

Synonyms: succinic acid, suc, succ, butanedioic acid, ethylenesuccinic acid

Superclasses: an acid all carboxy acids a carboxylate a dicarboxylate a C4-dicarboxylate

Chemical Formula: C4H4O4

Molecular Weight: 116.07 Daltons

Monoisotopic Molecular Weight: 118.026608681 Daltons

SMILES: C(C([O-])=O)CC([O-])=O

InChI: InChI=1S/C4H6O4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)(H,7,8)/p-2

InChIKey: InChIKey=KDYFGRWQOYBRFD-UHFFFAOYSA-L

Unification Links: CAS:110-15-6 , ChEBI:30031 , ChemSpider:140973 , HMDB:HMDB00254 , IAF1260:33633 , KEGG:C00042 , KNApSAcK:C00001205 , MetaboLights:MTBLC30031 , PubChem:160419

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -125.16375 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

aerobic respiration I (cytochrome c) , aerobic respiration II (cytochrome c) (yeast) , aerobic respiration III (alternative oxidase pathway) , methylaspartate cycle , succinate to cytochrome bd oxidase electron transfer , succinate to cytochrome bo oxidase electron transfer , superpathway of glyoxylate cycle and fatty acid degradation , TCA cycle I (prokaryotic) , TCA cycle II (plants and fungi) , TCA cycle III (animals) :
succinate[in] + an ubiquinone[CCO-OUT-CCO-IN] → fumarate[in] + an ubiquinol[CCO-OUT-CCO-IN]

TCA cycle IV (2-oxoglutarate decarboxylase) , TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) , TCA cycle VII (acetate-producers) :
succinate[in] + an electron-transfer-related quinone[CCO-OUT-CCO-IN] → fumarate[in] + an electron-transfer-related quinol[CCO-OUT-CCO-IN]

Not in pathways:
succinate[in] + caldariellaquinone → fumarate[in] + caldariellaquinol

methyl ketone biosynthesis :
a carboxylate + ATP + coenzyme A → an acyl-CoA + AMP + diphosphate


an acyl-protein synthetase + a carboxylate + ATP → an acyl-protein thioester + AMP + diphosphate
a carboxylate + GTP + coenzyme A → an acyl-CoA + GDP + phosphate

Reactions known to produce the compound:

(5R)-carbapenem carboxylate biosynthesis :
(3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + oxygen → (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O

2,4-dichlorophenoxyacetate degradation :
2,4-dichlorophenoxyacetate + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + glyoxylate + succinate + CO2

2-aminoethylphosphonate degradation III :
(2-aminoethyl)phosphonate + 2-oxoglutarate + oxygen → (2-amino-1-hydroxyethyl)phosphonate + succinate + CO2

3-oxoadipate degradation :
3-oxoadipate + succinyl-CoA → 3-oxoadipyl-CoA + succinate

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate :
(2Z,4E)-2-hydroxy-6-oxonona-2,4-diene-1,9-dioate + H2O → (2Z)-2-hydroxypenta-2,4-dienoate + succinate + H+

4-aminobutyrate degradation , 4-aminobutyrate degradation IV , GABA shunt , glutamate degradation IV :
succinate semialdehyde + NAD+ + H2O → succinate + NADH + 2 H+

4-aminobutyrate degradation II , 4-hydroxyphenylacetate degradation , nicotine degradation I , nicotine degradation II , TCA cycle IV (2-oxoglutarate decarboxylase) :
succinate semialdehyde + NADP+ + H2O → succinate + NADPH + 2 H+

4-aminobutyrate degradation III :
succinate semialdehyde + NAD(P)+ + H2O → succinate + NAD(P)H + 2 H+

4-chloro-2-methylphenoxyacetate degradation :
4-chloro-2-methylphenoxyacetate + 2-oxoglutarate + oxygen → 2-methyl-4-chlorophenol + glyoxylate + succinate + CO2

4-methylcatechol degradation (ortho cleavage) :
4-methyl-3-oxoadipate + succinyl-CoA → 4-methyl-3-oxoadipyl-CoA + succinate

anaerobic energy metabolism (invertebrates, mitochondrial) :
fumarate[mitochondrial lumen] + a rhodoquinol[CCO-MIT-IM-SPC-CCO-MIT-LUM]succinate[mitochondrial lumen] + a rhodoquinone[CCO-MIT-IM-SPC-CCO-MIT-LUM]

anthocyanin biosynthesis (cyanidin 3-O-glucoside) :
leucocyanidin + 2-oxoglutarate + oxygen → a dihydroquercetin + succinate + CO2 + H2O
leucocyanidin + 2-oxoglutarate + oxygen → cyanidin + succinate + CO2 + H+ + 2 H2O

anthocyanin biosynthesis (delphinidin 3-O-glucoside) :
leucodelphinidin + 2-oxoglutarate + oxygen → delphinidin + CO2 + succinate + H+ + 2 H2O

anthocyanin biosynthesis (pelargonidin 3-O-glucoside) :
leucopelargonidin + 2-oxoglutarate + oxygen → pelargonidin + succinate + CO2 + H+ + 2 H2O

apigeninidin 5-O-glucoside biosynthesis :
apiforol + 2-oxoglutarate + oxygen → apigeninidin + succinate + CO2 + 2 H2O

arginine degradation II (AST pathway) :
N2-succinylglutamate + H2O → L-glutamate + succinate

brassicicene C biosynthesis :
fusicocca-2,10(14)-diene-8β,16-diol + 2-oxoglutarate + oxygen → fusicocca-1,10(14)-diene-3,8β,16-triol + succinate + CO2

chrysin biosynthesis :
(2S)-pinocembrin + 2-oxoglutarate + oxygen → chrysin + succinate + CO2 + H2O

clavulanate biosynthesis :
deoxyamidinoproclavaminate + 2-oxoglutarate + oxygen → amidinoproclavaminate + succinate + CO2
dihydroclavaminate + 2-oxoglutarate + oxygen → clavaminate + CO2 + succinate + H2O
proclavaminate + 2-oxoglutarate + oxygen → dihydroclavaminate + CO2 + succinate + H2O

coumarins biosynthesis (engineered) :
feruloyl-CoA + 2-oxoglutarate + oxygen → 6'-hydroxyferuloyl-CoA + succinate + CO2
4-coumaryl-CoA + 2-oxoglutarate + oxygen → 2,4-dihydroxycinnamoyl-CoA + succinate + CO2

D-cycloserine biosynthesis :
L-arginine + 2-oxoglutarate + oxygen → Nω-hydroxy-L-arginine + succinate + CO2

deacetylcephalosporin C biosynthesis :
2-oxoglutarate + penicillin N + oxygen → CO2 + succinate + deacetoxycephalosporin C + H2O
deacetoxycephalosporin C + 2-oxoglutarate + oxygen → deacetylcephalosporin-C + succinate + CO2

dehydrophos biosynthesis :
2-hydroxyethylphosphonate + 2-oxoglutarate + oxygen → 1,2-dihydroxyethylphosphonate + succinate + CO2

DIMBOA-glucoside biosynthesis :
DIBOA-β-D-glucoside + 2-oxoglutarate + oxygen → TRIBOA-β-D-glucoside + succinate + CO2

ethylene biosynthesis II (microbes) :
L-arginine + 2-oxoglutarate + oxygen → (3S)-3-hydroxy-L-arginine + succinate + CO2

ethylene biosynthesis IV :
2-oxoglutarate + L-arginine + oxygen → succinate + CO2 + guanidinium + (S)-1-pyrroline-5-carboxylate + H2O + H+

fatty acid α-oxidation II :
a 3-methyl-branched 2,3,4-saturated fatty acyl-CoA + 2-oxoglutarate + oxygen → a 2-hydroxy-3-methyl-branched 2,3,4-saturated fatty acyl-CoA + succinate + CO2

flavonoid biosynthesis :
(2S)-naringenin + 2-oxoglutarate + oxygen → (+)-dihydrokaempferol + succinate + CO2
(2R)-naringenin + 2-oxoglutarate + oxygen → (-)-dihydrokaempferol + succinate + CO2

flavonoid biosynthesis (in equisetum) :
eriodictyol + 2-oxoglutarate + oxygen → (+)-taxifolin + succinate + CO2
(+)-dihydrokaempferol + 2-oxoglutarate + oxygen → kaempferol + succinate + CO2 + H2O + H+
(+)-taxifolin + 2-oxoglutarate + oxygen → quercetin + succinate + CO2 + H2O
(2S)-naringenin + 2-oxoglutarate + oxygen → (+)-dihydrokaempferol + succinate + CO2
eriodictyol + 2-oxoglutarate + oxygen → luteolin + succinate + CO2 + H2O
(2S)-naringenin + 2-oxoglutarate + oxygen → apigenin + succinate + CO2 + H2O + H+

flavonol biosynthesis :
(+)-dihydrokaempferol + 2-oxoglutarate + oxygen → kaempferol + succinate + CO2 + H2O + H+
(+)-taxifolin + 2-oxoglutarate + oxygen → quercetin + succinate + CO2 + H2O
dihydromyricetin + 2-oxoglutarate + oxygen → myricetin + succinate + CO2 + H2O

FR-900098 and FR-33289 antibiotics biosynthesis :
FR-900098 + 2-oxoglutarate + oxygen → FR-33289 + succinate + CO2

fumitremorgin A biosynthesis :
fumitremorgin B + 2-oxoglutarate + a reduced electron acceptor + 2 oxygen → verruculogen + succinate + CO2 + an oxidized electron acceptor + H2O

fusicoccin A biosynthesis :
fusicocca-2,10(14)-diene-8β,16-diol + 2-oxoglutarate + oxygen → 8β-hydroxyfusicocca-1,10(14)-diene-16-al + succinate + CO2 + H2O

γ-butyrobetaine degradation :
γ-butyrobetaine + 2-oxoglutarate + oxygen → L-carnitine + succinate + CO2

gibberellin biosynthesis I (non C-3, non C-13 hydroxylation) :
gibberellin A24 + 2-oxoglutarate + oxygen → gibberellin A36 + succinate + CO2
gibberellin A9 + 2-oxoglutarate + oxygen → gibberellin A4 + succinate + CO2
gibberellin A25 + 2-oxoglutarate + oxygen → gibberellin A13 + succinate + CO2
gibberellin A15 (open lactone form) + 2-oxoglutarate + oxygen → gibberellin A24 + succinate + CO2 + H2O
gibberellin A24 + 2-oxoglutarate + oxygen → gibberellin A25 + CO2 + succinate + H+
gibberellin A12 + 2-oxoglutarate + oxygen → gibberellin A15 (open lactone form) + CO2 + succinate
gibberellin A24 + 2-oxoglutarate + oxygen → gibberellin A9 + 2 CO2 + succinate + H+

gibberellin biosynthesis II (early C-3 hydroxylation) :
gibberellin A15 (open lactone form) + 2-oxoglutarate + oxygen → gibberellin A37 + succinate + CO2
gibberellin A12 + 2-oxoglutarate + oxygen → gibberellin A14 + succinate + CO2
gibberellin A37 + 2-oxoglutarate + oxygen → gibberellin A36 + succinate + CO2 + H2O
gibberellin A14 + 2-oxoglutarate + oxygen → gibberellin A37 + CO2 + succinate
gibberellin A36 + 2-oxoglutarate + oxygen → gibberellin A4 + succinate + 2 CO2 + H+

gibberellin biosynthesis III (early C-13 hydroxylation) :
gibberellin A20 + 2-oxoglutarate + oxygen → gibberellin A1 + succinate + CO2
gibberellin A19 + 2-oxoglutarate + oxygen → gibberellin A20 + 2 CO2 + succinate + H+
gibberellin A19 + 2-oxoglutarate + oxygen → gibberellin A17 + succinate + CO2 + H+
gibberellin A53 + 2-oxoglutarate + oxygen → gibberellin44 (open lactone form) + CO2 + succinate
gibberellin44 (open lactone form) + 2-oxoglutarate + H+ + oxygen → gibberellin A38 + succinate + CO2 + H2O
gibberellin44 (open lactone form) + 2-oxoglutarate + oxygen → gibberellin A19 + succinate + CO2 + H2O

gibberellin biosynthesis V :
gibberellin A5 + 2-oxoglutarate + oxygen → gibberellin A3 + succinate + CO2
gibberellin A5 + 2-oxoglutarate + oxygen → gibberellin A6 + succinate + CO2

gibberellin inactivation I (2β-hydroxylation) :
gibberellin A4 + 2-oxoglutarate + oxygen → gibberellin A34 + succinate + CO2
gibberellin A20 + 2-oxoglutarate + oxygen → gibberellin A29 + succinate + CO2
gibberellin A29 + 2-oxoglutarate + oxygen → gibberellin A29-catabolite + succinate + CO2 + H+ + H2O
gibberellin A1 + 2-oxoglutarate + oxygen → gibberellin A8 + succinate + CO2
gibberellin A8 + 2-oxoglutarate + oxygen → gibberellin A8-catabolite + succinate + CO2 + H+ + H2O
gibberellin A9 + 2-oxoglutarate + oxygen → gibberellin A51 + succinate + CO2
gibberellin A51 + 2-oxoglutarate + oxygen → gibberellin A51-catabolite + succinate + CO2 + H+ + H2O
gibberellin A34 + 2-oxoglutarate + oxygen → gibberellin A34-catabolite + succinate + CO2 + H+ + H2O
gibberellin A44 (closed lactone form) + 2-oxoglutarate + 2 H+ + oxygen → gibberellin A98 + succinate + CO2
gibberellin A12 + 2-oxoglutarate + oxygen → gibberellin A110 + succinate + CO2
gibberellin A53 + 2-oxoglutarate + oxygen → gibberellin A97 + succinate + CO2

hydroxylated mugineic acid phytosiderophore biosynthesis :
2'-deoxymugineate + 2-oxoglutarate + oxygen → mugineate + succinate + CO2 + H+
mugineate + 2-oxoglutarate + oxygen → 3-epihydroxymugineate + succinate + CO2
2'-deoxymugineate + 2-oxoglutarate + oxygen → 3-epihydroxy-2'-deoxymugineate + succinate + CO2 + H+

hyoscyamine and scopolamine biosynthesis :
L-hyoscyamine + 2-oxoglutarate + oxygen → (6S)-hydroxyhyoscyamine + succinate + CO2
(6S)-hydroxyhyoscyamine + 2-oxoglutarate + oxygen → scopolamine + succinate + CO2 + H+ + H2O

isoflavonoid biosynthesis II :
(2S)-naringenin + 2-oxoglutarate + oxygen → apigenin + succinate + CO2 + H2O + H+

itaconate degradation :
succinyl-CoA + itaconate → succinate + itaconyl-CoA

kanamycin biosynthesis :
kanamycin B + 2-oxoglutarate + oxygen → 2'-dehydrokanamycin A + succinate + ammonium + CO2

L-carnitine biosynthesis :
N6,N6,N6-trimethyl-L-lysine + 2-oxoglutarate + oxygen → 3-hydroxy-N6,N6,N6-trimethyl-L-lysine + succinate + CO2
γ-butyrobetaine + 2-oxoglutarate + oxygen → L-carnitine + succinate + CO2

leucodelphinidin biosynthesis :
(2S)-dihydrotricetin + 2-oxoglutarate + oxygen → dihydromyricetin + succinate + CO2

leucopelargonidin and leucocyanidin biosynthesis :
eriodictyol + 2-oxoglutarate + oxygen → (+)-taxifolin + succinate + CO2

luteolin biosynthesis :
eriodictyol + 2-oxoglutarate + oxygen → luteolin + succinate + CO2 + H2O
(2S)-naringenin + 2-oxoglutarate + oxygen → apigenin + succinate + CO2 + H2O + H+

luteolinidin 5-O-glucoside biosynthesis :
luteoforol + 2-oxoglutarate + oxygen + H+ → luteolinidin + succinate + CO2 + 2 H2O

lysine degradation IV , lysine degradation V , lysine degradation X :
glutarate + succinyl-CoA → glutaryl-CoA + succinate

m-xylene degradation (anaerobic) :
(3-methylbenzyl)succinate + succinyl-CoA → (3-methylbenzyl)succinyl-CoA + succinate

methionine biosynthesis I :
L-cysteine + O-succinyl-L-homoserine → succinate + L-cystathionine + H+

methylaspartate cycle :
mesaconate + succinyl-CoA → 2-methylfumaryl-CoA + succinate

morphine biosynthesis :
oripavine + 2-oxoglutarate + oxygen → morphinone + formaldehyde + succinate + CO2
thebaine + 2-oxoglutarate + oxygen → oripavine + formaldehyde + succinate + CO2
thebaine + 2-oxoglutarate + oxygen → neopinone + formaldehyde + succinate + CO2
codeine + 2-oxoglutarate + oxygen → morphine + formaldehyde + succinate + CO2

Reactions known to both consume and produce the compound:

2-methylcitrate cycle I , 2-methylcitrate cycle II :
(2R,3S)-2-methylisocitrate ↔ succinate + pyruvate

3-hydroxypropanoate cycle :
succinyl-CoA + (S)-malate ↔ succinate + (S)-malyl-CoA

acetate formation from acetyl-CoA III (succinate) , succinate fermentation to butyrate , TCA cycle VII (acetate-producers) :
acetate + succinyl-CoA ↔ acetyl-CoA + succinate

anaerobic energy metabolism (invertebrates, mitochondrial) :
acetate + succinyl-CoA ↔ acetyl-CoA + succinate
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]
propanoyl-CoA + succinate ↔ propanoate + succinyl-CoA

conversion of succinate to propionate :
propanoyl-CoA + succinate ↔ propanoate + succinyl-CoA

glycerol-3-phosphate to fumarate electron transfer , mixed acid fermentation , NADH to fumarate electron transfer :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]

glyoxylate cycle , TCA cycle IV (2-oxoglutarate decarboxylase) :
D-threo-isocitrate ↔ glyoxylate + succinate

incomplete reductive TCA cycle :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

ketolysis :
succinyl-CoA + acetoacetate ↔ succinate + acetoacetyl-CoA

lysine biosynthesis I :
N-succinyl-L,L-2,6-diaminopimelate + H2O ↔ L,L-diaminopimelate + succinate

methylaspartate cycle , pyruvate fermentation to acetate V , pyruvate fermentation to acetate VI , TCA cycle I (prokaryotic) , TCA cycle II (plants and fungi) , TCA cycle VI (obligate autotrophs) :
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

pyruvate fermentation to propionate I :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]
propanoyl-CoA + succinate ↔ propanoate + succinyl-CoA

reductive TCA cycle I :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

reductive TCA cycle II :
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

TCA cycle III (animals) :
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]
succinate[mitochondrial lumen] + GTP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + GDP[mitochondrial lumen] + phosphate[mitochondrial lumen]

TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) :
D-threo-isocitrate ↔ glyoxylate + succinate
succinate[mitochondrial lumen] + ATP[mitochondrial lumen] + coenzyme A[mitochondrial lumen] ↔ succinyl-CoA[mitochondrial lumen] + ADP[mitochondrial lumen] + phosphate[mitochondrial lumen]

TCA cycle VIII (helicobacter) :
succinyl-CoA + acetoacetate ↔ succinate + acetoacetyl-CoA
fumarate[in] + a menaquinol[CCO-OUT-CCO-IN]succinate[in] + a menaquinone[CCO-OUT-CCO-IN]

toluene degradation to benzoyl-CoA (anaerobic) :
(R)-2-benzylsuccinate + succinyl-CoA ↔ (R)-benzylsuccinyl-CoA + succinate

Not in pathways:
succinyl-CoA + (S)-citramalate ↔ (3S)-citramalyl-CoA + succinate

sphingolipid recycling and degradation (yeast) :
a dihydroceramide + H2O ↔ sphinganine + a carboxylate

In Reactions of unknown directionality:

glycolate degradation II :
6 glycolate + H+ = acetate + 2 succinate + 2 CO2 + 4 H2O

Not in pathways:
O-succinyl-L-homoserine + hydrogen sulfide = L-homocysteine + succinate + H+
a [protein] N6,N6-dimethyl-L-lysine + 2-oxoglutarate + oxygen = a [protein] N6-methyl-L-lysine + succinate + formaldehyde + CO2
a 3-oxo acid + succinyl-CoA = a 3-oxoacyl-CoA + succinate
3-hydroxy-3-methylglutarate + succinyl-CoA = (S)-3-hydroxy-3-methylglutaryl-CoA + succinate
succinyl-CoA + (R)-citramalate = succinate + (3R)-citramalyl-CoA
succinyl-CoA + (R)-malate = succinate + (R)-malyl-CoA
succinyl-CoA + citramalate = citramalyl-CoA + succinate
4-oxo-4-sulfanylbutanoate + H2O = succinate + hydrogen sulfide + H+
fumarate + coenzyme B + coenzyme M = succinate + CoB-CoM heterodisulfide
xanthine + 2-oxoglutarate + oxygen = urate + succinate + CO2
succinate + ITP + coenzyme A = succinyl-CoA + IDP + phosphate
succinate + NAD+ = fumarate + NADH + H+


a monoamide of a dicarboxylate + H2O = ammonium + a dicarboxylate


eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
an aldehyde + pyrroloquinoline quinone + H2O = a carboxylate + pyrroloquinoline quinol + H+
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized electron acceptor + H2O = a carboxylate + a reduced electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an N-acylated aliphatic-L-amino acid + H2O = a carboxylate + an aliphatic L-amino acid
a D-hexose + an acyl phosphate = a D-hexose-phosphate + a carboxylate
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an N-acyl-D-glutamate + H2O = a carboxylate + D-glutamate
an anilide + H2O = aniline + a carboxylate + H+
a 5'-acylphosphoadenosine + H2O = a carboxylate + AMP + 2 H+
a 3-acylpyruvate + H2O = a carboxylate + pyruvate + H+
an N6acyl-L-lysine + H2O = a carboxylate + L-lysine
an N-acyl-D-aspartate + H2O = a carboxylate + D-aspartate

In Transport reactions:
succinate[cytosol] + fumarate[periplasmic space] → fumarate[cytosol] + succinate[periplasmic space] ,
succinate[periplasmic space] + 2 H+[periplasmic space]succinate[cytosol] + 2 H+[cytosol] ,
succinate[cytosol] + L-aspartate[periplasmic space] → L-aspartate[cytosol] + succinate[periplasmic space] ,
D-tartrate[periplasmic space] + succinate[cytosol]succinate[periplasmic space] + D-tartrate[cytosol] ,
succinate[cytosol] + citrate[periplasmic space] → citrate[cytosol] + succinate[periplasmic space] ,
succinate[cytosol] + (S)-malate[periplasmic space] → (S)-malate[cytosol] + succinate[periplasmic space] ,
L-tartrate[periplasmic space] + succinate[cytosol] → L-tartrate[cytosol] + succinate[periplasmic space] ,
succinate[periplasmic space]succinate[cytosol] ,
a C4-dicarboxylate[cytosol] + 2 H+[cytosol]a C4-dicarboxylate[cytosol] + 2 H+[cytosol] ,
a C4-dicarboxylate[periplasmic space] + 3 H+[periplasmic space]a C4-dicarboxylate[cytosol] + 3 H+[cytosol]

In Redox half-reactions:
fumarate[in] + 2 H+[in] + 2 e-succinate[in]

Enzymes activated by succinate, sorted by the type of activation, are:

Activator (Mechanism unknown) of: isoflavone-7-O-glucoside-6''-O-malonate malonyltransferase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , isoflavone-7-O-glucoside-6''-O-malonate malonylesterase [Hinderer86] , prolycopene isomerase [Isaacson04]

Enzymes inhibited by succinate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: aspartate transcarbamylase [Changeux68, Comment 1] , 3-dehydroquinate dehydratase [Chaudhuri86] , glutamate decarboxylase A [Fonda72] , glutamate decarboxylase B [Fonda72] , citramalate hydrolyase , glutamate dehydrogenase (NADP-dependent) [Comment 2] , 2-methyleneglutarate mutase [Kung71] , urocanase [Hug68]

Inhibitor (Uncompetitive) of: isocitrate lyase [Hoyt88, Comment 3]

Inhibitor (Noncompetitive) of: glutamate dehydrogenase (NAD-dependent) [Bonete96, Comment 4]

Inhibitor (Mechanism unknown) of: triose phosphate isomerase [Tomlinson79] , desacetoxyvindoline 4-hydroxylase [De93] , aspartate aminotransferase [Michuda70]


References

Bonete90: Bonete MJ, Camacho ML, Cadenas E (1990). "Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase." Biochim Biophys Acta 1990;1041(3);305-10. PMID: 1980084

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Changeux68: Changeux JP, Gerhart JC, Schachman HK (1968). "Allosteric interactions in aspartate transcarbamylase. I. Binding of specific ligands to the native enzyme and its isolated subunits." Biochemistry 7(2);531-8. PMID: 4868539

Chaudhuri86: Chaudhuri S, Lambert JM, McColl LA, Coggins JR (1986). "Purification and characterization of 3-dehydroquinase from Escherichia coli." Biochem J 1986;239(3);699-704. PMID: 2950851

De93: De Carolis E, De Luca V (1993). "Purification, characterization, and kinetic analysis of a 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus." J Biol Chem 268(8);5504-11. PMID: 8449913

Fonda72: Fonda ML (1972). "Glutamate decarboxylase. Substrate specificity and inhibition by carboxylic acids." Biochemistry 1972;11(7);1304-9. PMID: 4552052

Hinderer86: Hinderer W, Koster J, Barz W (1986). "Purfication and properties of a specific isoflavone 7-O-glucoside-6''-malonate malonyestrase from roots of chickpea (Cicer arietinum L.)." Arch Biochem Biophys 248(2);570-8. PMID: 3740841

Hoyt88: Hoyt JC, Robertson EF, Berlyn KA, Reeves HC (1988). "Escherichia coli isocitrate lyase: properties and comparisons." Biochim Biophys Acta 1988;966(1);30-5. PMID: 3291954

Hug68: Hug DH, Roth D, Hunter J (1968). "Regulation of histidine catabolism by succinate in Pseudomonas putida." J Bacteriol 96(2);396-402. PMID: 5674054

Isaacson04: Isaacson T, Ohad I, Beyer P, Hirschberg J (2004). "Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants." Plant Physiol 136(4);4246-55. PMID: 15557094

Kung71: Kung HF, Stadtman TC (1971). "Nicotinic acid metabolism. VI. Purification and properties of alpha-methyleneglutarate mutase (B 12-dependent) and methylitaconate isomerase." J Biol Chem 246(10);3378-88. PMID: 5574401

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Michuda70: Michuda CM, Martinez-Carrion M (1970). "The isozymes of glutamate-aspartate transaminase. Mechanism of inhibition of dicarboxylic acids." J Biol Chem 245(2);262-9. PMID: 4312670

Tomlinson79: Tomlinson J.D., Turner J.F. "Pea seed triose phosphate isomerase." Phytochemistry (1979) 18:1959-1962.

Tsuruta94: Tsuruta H, Vachette P, Sano T, Moody MF, Amemiya Y, Wakabayashi K, Kihara H (1994). "Kinetics of the quaternary structure change of aspartate transcarbamylase triggered by succinate, a competitive inhibitor." Biochemistry 1994;33(33);10007-12. PMID: 8060968


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Thu Dec 18, 2014, biocyc13.