Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: NAD+

Synonyms: NAD+, beta-nicotinamide adenine dinucleotide, coenzyme I, diphosphopyridine nucleotide, diphosphopyridine nucleotide oxidized, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide oxidized, NAD-oxidized, NAD-ox, DPN+, DPN-ox, DPN, β-nicotinamide adenine dinucleotide, NAD, β-NAD+

Superclasses: a nucleic acid component a nucleotide a dinucleotide a dinucleotide electron carrier NAD(P)+
a nucleic acid component a nucleotide a dinucleotide electron carrier NAD(P)+
a nucleic acid component an oligonucleotide a dinucleotide a dinucleotide electron carrier NAD(P)+
a redox electron carrier NAD(P)+

Summary:
NAD+ and NADP+ are dinucleotides containing one nicotinamide base and one adenine base. Each nucleotide is connected to a ribose sugar at position 1, and the two riboses are connected at their 5 position via a diphosphate. The only difference between the two is that in NADP there is an additional phosphate group at the 2' position of the ribose that carries the adenine moiety.

These molecules are biological carriers of reductive equivalents (i.e. high potential electrons). They are often referred to as coenzymes, although in most of their reactions they function as cosubstrates rather than true coenzymes.

The most common function of NAD+ is to accept two electrons and a proton (a hydride ion) from a substrate that is being oxidized. This reduction converts NAD+ to NADH, the reduced form. NADH then diffuses or is being transported to a terminal oxidase, where the electrons are passed on, regenerating the oxidized form.

NADPH, on the other hand, is mostly involved in biosynthetic reactions, where it serves as an electron donor. NADPH is formed by reduction of NADP+, which occurs by different mechanisms in different types of organisms. In photosynthetic organisms NADP+ is reduced by photosystem I. In heterotrophic organisms it is reduced by central metabolism processes such as the pentose phosphate pathway (see pentose phosphate pathway (oxidative branch) I).

Chemical Formula: C21H26N7O14P2

Molecular Weight: 662.42 Daltons

Monoisotopic Molecular Weight: 664.1169466645999 Daltons

SMILES: C1(C(=CC=C[N+]=1C5(OC(COP(=O)([O-])OP(=O)([O-])OCC2(OC(C(O)C(O)2)N4(C=NC3(C(N)=NC=NC=34))))C(O)C(O)5))C(N)=O)

InChI: InChI=1S/C21H27N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-10)27-3-1-2-9(4-27)18(23)33/h1-4,7-8,10-11,13-16,20-21,29-32H,5-6H2,(H5-,22,23,24,25,33,34,35,36,37)/p-1/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1

InChIKey: InChIKey=BAWFJGJZGIEFAR-NNYOXOHSSA-M

Unification Links: CAS:53-84-9 , ChEBI:57540 , ChemSpider:10239196 , HMDB:HMDB00902 , IAF1260:33480 , KEGG:C00003 , MetaboLights:MTBLC57540 , PubChem:15938971

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -338.38196 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(+)-camphor degradation :
(+)-5-exo-hydroxycamphor + NAD+ → (+)-bornane-2,5-dione + NADH + H+

(-)-camphor biosynthesis :
(-)-borneol + NAD+ → (-)-camphor + NADH + H+

(-)-camphor degradation :
(-)-3-exo-hydroxycamphor + NAD+ → 3,6-diketocamphane + NADH + H+

(1'S,5'S)-averufin biosynthesis :
(1'S,5'S)-hydroxyaverantin + NAD+ → 5'-oxoaverantin + NADH + H+
(1'S,5'R)-hydroxyaverantin + NAD+ → 5'-oxoaverantin + NADH + H+

(4R)-carveol and (4R)-dihydrocarveol degradation :
(-)-dihydrocarveol + NAD+ → (+)-dihydrocarvone + NADH + H+
(3R,6R)-6-hydroxy-3-isopropenylheptanoate + NAD+ → (3R)-3-isopropenyl-6-oxoheptanoate + NADH + H+
(+)-isodihydrocarveol + NAD+ → (+)-isodihydrocarvone + NADH + H+
(+)-neoisodihydrocarveol + NAD+ → (+)-isodihydrocarvone + NADH + H+
(+)-neodihydrocarveol + NAD+ → (+)-dihydrocarvone + NADH + H+

(4S)-carveol and (4S)-dihydrocarveol degradation :
(+)-trans-carveol + NAD+S-(+)-carvone + NADH + H+
(3S,6R)-6-hydroxy-3-isopropenyl-heptanoate + NAD+ → (3S)-3-isopropenyl-6-oxoheptanoate + NADH + H+
(-)-neodihydrocarveol + NAD+ → (-)-dihydrocarvone + NADH + H+
(+)-dihydrocarveol + NAD+ → (-)-dihydrocarvone + NADH + H+
(-)-isodihydrocarveol + NAD+ → (-)-isodihydrocarvone + NADH + H+
(-)-neoisodihydrocarveol + NAD+ → (-)-isodihydrocarvone + NADH + H+

(4S)-carvone biosynthesis :
(+)-trans-carveol + NAD+S-(+)-carvone + NADH + H+

1,2,4-trichlorobenzene degradation :
3,4,6-trichloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+ → 3,4,6-trichlorocatechol + NADH + 2 H+

1,2-dichlorobenzene degradation :
1,2-dichlorobenzene dihydrodiol + NAD+ → 4,5-dichlorobenzene-1,2-diol + NADH + H+

1,3-dichlorobenzene degradation :
3,5-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+ → 3,5-dichlorocatechol + NADH + H+

1,8-cineole degradation :
6-endo-hydroxycineole + NAD+ → 6-oxocineole + NADH + H+

10-cis-heptadecenoyl-CoA degradation (yeast) :
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-undecanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-nonanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy, 6-cis-tridecenoyl-CoA + NAD+ → 6-cis, 3-oxo-tridecenoyl-CoA + NADH + H+
10-cis-heptadecenoyl-CoA + 2 coenzyme A + 2 NAD+ + 2 H2O + 2 oxygen → 6-cis-tridecenoyl-CoA + 2 acetyl-CoA + 2 hydrogen peroxide + 2 NADH + 2 H+

10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) :
3-hydroxy, 4-trans-undecenoyl-CoA + NAD+ → 4-trans-3-oxo-undecenoyl-CoA + NADH + H+
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+

10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) :
3-hydroxy, 6-trans-tridecenoyl-CoA + NAD+ → 6-trans-3-oxo-tridecenoyl-CoA + NADH + H+
10-trans-heptadecenoyl-CoA + 2 coenzyme A + 2 NAD+ + 2 H2O + 2 oxygen → 6-trans-tridecenoyl-CoA + 2 acetyl-CoA + 2 hydrogen peroxide + 2 NADH + 2 H+
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-undecanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-nonanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+

2,3-dihydroxybenzoate biosynthesis :
(2S,3S)-2,3-dihydroxy-2,3-dihydrobenzoate + NAD+ → 2,3-dihydroxybenzoate + NADH + H+

2,3-dihydroxypropane-1-sulfonate degradation :
(R)-2,3-dihydroxypropane 1-sulfonate + 2 NAD+ + H2O → (2R)-3-sulfolactate + 2 NADH + 3 H+

2,4-dichlorotoluene degradation :
4,6-dichloro-3-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+ → 4,6-dichloro-3-methylcatechol + NADH + H+

2,4-dinitrotoluene degradation :
methylmalonate semialdehyde + coenzyme A + NAD+ + H2O → propanoyl-CoA + hydrogen carbonate + NADH + H+

2,5-dichlorotoluene degradation :
3,6-dichloro-4-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+ → 3,6-dichloro-4-methylcatechol + NADH + H+

2-amino-3-carboxymuconate semialdehyde degradation to 2-oxopentenoate , 2-aminophenol degradation , 2-nitrobenzoate degradation I :
2-aminomuconate 6-semialdehyde + NAD+ + H2O → 2-aminomuconate + NADH + 2 H+

2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA :
2-aminomuconate 6-semialdehyde + NAD+ + H2O → 2-aminomuconate + NADH + 2 H+
2-oxoadipate + coenzyme A + NAD+ → CO2 + glutaryl-CoA + NADH

2-aminoethylphosphonate degradation II :
phosphonoacetaldehyde + NAD+ + H2O → phosphonoacetate + NADH + 2 H+

2-oxobutanoate degradation I , threonine degradation :
2-oxobutanoate + coenzyme A + NAD+ → propanoyl-CoA + CO2 + NADH

3,4-dichlorotoluene degradation :
3,4-dichlorotoluene dihydrodiol + NAD+ → 3,4-dichloro-6-methylcatechol + NADH + H+

3-chlorobenzoate degradation I (via chlorocatechol) :
5-chloro-3,5-cyclohexadiene-l,2-diol-1-carboxylate + NAD+ → 4-chlorocatechol + CO2 + NADH
3-chloro-3,5-cyclohexadiene-l,2-diol-1-carboxylate + NAD+ → 3-chlorocatechol + CO2 + NADH

3-chlorobenzoate degradation II (via protocatechuate) :
3-chlorobenzoate-cis-3,4-diol + NAD+ → protocatechuate + chloride + NADH
3-chlorobenzoate-cis-4,5-diol + NAD+ → 5-chloroprotocatechuate + NADH + H+

3-chlorotoluene degradation I :
5-chloro-3-methyl benzene dihydrodiol + NAD+ → 5-chloro-3-methylcatechol + NADH + H+

3-chlorotoluene degradation II :
3-chlorobenzaldehyde + NAD+ + H2O → 3-chlorobenzoate + NADH + 2 H+
3-chlorobenzyl alcohol + NAD+ → 3-chlorobenzaldehyde + NADH + H+

3-dehydroquinate biosynthesis II (archaea) :
2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate + NAD+ + H2O → 3-dehydroquinate + ammonium + NADH + H+

3-dimethylallyl-4-hydroxybenzoate biosynthesis , tyrosine biosynthesis I :
prephenate + NAD+ → 4-hydroxyphenylpyruvate + CO2 + NADH

3-methylquinoline degradation :
5,6-dihydrodiol-3-methyl-2-oxo-1,2-dihydroquinoline + NAD+ → 5,6-dihydroxy-3-methyl-2-oxo-1,2-dihydroquinoline + NADH + H+

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate :
3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate + NAD+ → 3-(2,3-dihydroxyphenyl)propanoate + NADH + H+

3-phenylpropionate degradation :
3-hydroxy-3-phenylpropanoyl-CoA + NAD+ → 3-oxo-3-phenylpropanoyl-CoA + NADH + H+

4-amino-3-hydroxybenzoate degradation , catechol degradation to 2-oxopent-4-enoate II , protocatechuate degradation III (para-cleavage pathway) :
(2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate + NAD+ + H2O → (2Z,4E)-2-hydroxyhexa-2,4-dienedioate + NADH + 2 H+

4-aminobutyrate degradation , 4-aminobutyrate degradation IV , GABA shunt , glutamate degradation IV :
succinate semialdehyde + NAD+ + H2O → succinate + NADH + 2 H+

4-chloronitrobenzene degradation :
2-amino-5-chloromuconate 6-semialdehyde + NAD+ + H2O → 2-amino-5-chloromuconate + NADH + 2 H+

4-ethylphenol degradation (anaerobic) :
S-1-(4-hydroxyphenyl)-ethanol + NAD+ → 4-hydroxyacetophenone + NADH + H+

4-hydroxyacetophenone degradation , 4-nitrophenol degradation I :
(2E,4Z)-4-hydroxy-6-oxohexa-2,4-dienoate + NAD+ + H2O → 2-maleylacetate + NADH + 2 H+

4-hydroxybenzoate biosynthesis I (eukaryotes) :
4-coumaryl-CoA + coenzyme A + NAD+ + H2O → 4-hydroxybenzoyl-CoA + acetyl-CoA + NADH + H+

4-hydroxybenzoate biosynthesis IV , 4-hydroxymandelate degradation , toluene degradation to protocatechuate (via p-cresol) :
4-hydroxybenzaldehyde + NAD+ + H2O → 4-hydroxybenzoate + NADH + 2 H+

4-hydroxybenzoate biosynthesis V :
3-(4-hydroxyphenyl)-3-hydroxy-propanoyl-CoA + NAD+ → 4-hydroxybenzoyl-acetyl-CoA + NADH + H+

4-hydroxyphenylacetate degradation :
2-hydroxy-5-carboxymethylmuconate semialdehyde + NAD+ + H2O → 5-carboxymethyl-2-hydroxymuconate + NADH + 2 H+

4-nitrotoluene degradation I :
4-nitrobenzaldehyde + NAD+ + H2O → 4-nitrobenzoate + NADH + 2 H+

4-nitrotoluene degradation II :
2-amino-5-methyl-muconate semialdehyde + NAD+ + H2O → 2-amino-5-methyl-muconate + NADH + 2 H+

4-toluenecarboxylate degradation :
(3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate + NAD+ + H2O → protocatechuate + hydrogen carbonate + NADH + H+

6-gingerol analog biosynthesis :
trans-oct-2-enoyl-CoA + NAD+ + H2O → 3-oxooctanoyl-CoA + NADH + H+

9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) :
3-hydroxy-5-trans-dodecenoyl-CoA + NAD+ → 5-trans-3-oxo-dodecenoyl-CoA + NADH + H+
3-hydroxy- 5-cis, 7-trans-tetradecadienoyl-CoA + NAD+ → 5-cis, 7-trans-3-oxo-tetradecadienoyl-CoA + NADH + H+
9-cis, 11-trans-octadecadienoyl-CoA + 2 coenzyme A + 2 NAD+ + 2 oxygen + 2 H2O → 5-cis, 7-trans-tetradecadienoyl-CoA + 2 acetyl-CoA + 2 hydrogen peroxide + 2 NADH + 2 H+

abietic acid biosynthesis :
abieta-7,13-diene-18-al + NAD+ + H2O → abieta-7,13-diene-18-oate + NADH + 2 H+

abscisic acid biosynthesis :
2-cis,4-trans-xanthoxin + NAD+ → (+)-cis-abscisic aldehyde + NADH + H+

acetoin degradation :
acetoin + coenzyme A + NAD+ → acetaldehyde + acetyl-CoA + NADH + H+

acrylate degradation , β-alanine biosynthesis II :
3-hydroxypropanoate + NAD+ → malonate semialdehyde + NADH + H+

adenosine nucleotides degradation I , adenosine nucleotides degradation II :
hypoxanthine + NAD+ + H2O → xanthine + NADH + H+

alginate biosynthesis I , alginate biosynthesis II :
GDP-α-D-mannose + 2 NAD+ + H2O → GDP-mannuronate + 2 NADH + 3 H+

alkane oxidation :
an ω-oxo fatty acid + NAD+ + H2O → an α,ω-dicarboxylate + NADH + H+
a fatty aldehyde + NAD+ + H2O → a fatty acid + NADH + 2 H+

allantoin degradation IV (anaerobic) :
S-ureidoglycolate + NAD+ → oxalurate + NADH + H+

aminopropanol phosphate biosynthesis II , threonine degradation II , threonine degradation III (to methylglyoxal) :
L-threonine + NAD+ → 2-amino-3-oxobutanoate + NADH + 2 H+

anaerobic energy metabolism (invertebrates, mitochondrial) , C4 photosynthetic carbon assimilation cycle, NAD-ME type , chitin degradation to ethanol , gluconeogenesis I , L-carnitine degradation III :
(S)-malate + NAD+ → pyruvate + CO2 + NADH

androgen biosynthesis :
dehydroepiandrosterone + NAD+ → 5-androstene-3,17-dione + NADH + H+

androstenedione degradation :
3-[(3aS,4S,5R,7aS)-5-hydroxy-7a-methyl-1-oxo-octahydro-1H-inden-4-yl]-3-hydroxypropanoyl-CoA + NAD+ → 3-[(3aS,4S,5R,7aS)-5-hydroxy-7a-methyl-1-oxo-octahydro-1H-inden-4-yl]-3-oxopropanoyl-CoA + NADH + H+

arginine degradation I (arginase pathway) , ethylene biosynthesis II (microbes) , proline degradation :
L-glutamate-5-semialdehyde + NAD+ + H2O → L-glutamate + NADH + 2 H+

arginine degradation II (AST pathway) :
N2-succinyl-L-glutamate 5-semialdehyde + NAD+ + H2O → N2-succinylglutamate + NADH + 2 H+

arginine degradation IX (arginine:pyruvate transaminase pathway) , arginine degradation VIII (arginine oxidase pathway) :
4-guanidinobutyraldehyde + NAD+ + H2O → 4-guanidinobutyrate + NADH + 2 H+

aromatic biogenic amine degradation (bacteria) :
3,4-dihydroxyphenylacetaldehyde + NAD+ + H2O → 3,4-dihydroxyphenylacetate + NADH + 2 H+
(4-hydroxyphenyl)acetaldehyde + NAD+ + H2O → 4-hydroxyphenylacetate + NADH + 2 H+

benzene degradation :
cis-1,2-dihydrobenzene-1,2-diol + NAD+ → catechol + NADH + H+

benzoate degradation I (aerobic) :
3,5-cyclohexadiene-1,2-diol-1-carboxylate + NAD+ → catechol + CO2 + NADH

benzoyl-CoA degradation III (anaerobic) :
pimeloyl-CoA + NAD+ → 6-carboxyhex-2-enoyl-CoA + NADH + H+
2-hydroxy-cyclohexane-1-carbonyl-CoA + NAD+ → 2-ketocyclohexane-1-carbonyl-CoA + NADH + H+

β-alanine degradation I , β-alanine degradation II , myo-inositol degradation I :
malonate semialdehyde + coenzyme A + NAD+ → acetyl-CoA + CO2 + NADH

bile acid biosynthesis, neutral pathway :
(24R,25R)-3α,7α,24-trihydroxy-5β-cholestanoyl CoA + NAD+ → 3α,7α-dihydroxy-24-oxo-5β-cholestanoyl CoA + NADH + H+
(24R,25R)-3α,7α,12α,24-tetrahydroxy-5β-cholestanoyl CoA + NAD+ → 3α,7α,12α-trihydroxy-24-oxo-5-β-cholestanoyl CoA + NADH + H+
7α-hydroxycholesterol + NAD+ → 7α-hydroxycholest-4-en-3-one + NADH + H+

biphenyl degradation :
cis-3-phenylcyclohexa-3,5-diene-1,2-diol + NAD+ → biphenyl-2, 3-diol + NADH + H+

bixin biosynthesis :
bixin aldehyde + NAD+ + oxygen → norbixin + NADH + H+

Reactions known to produce the compound:

(+)-camphor degradation :
(+)-bornane-2,5-dione + NADH + H+ + oxygen → (+)-5-oxo-1,2-campholide + NAD+ + H2O

(-)-camphor degradation :
3,6-diketocamphane + NADH + H+ + oxygen → (-)-5-oxo-1,2-campholide + NAD+ + H2O

(R)-acetoin biosynthesis I :
(R)-acetoin + NAD+ ← diacetyl + NADH + H+

(S)-acetoin biosynthesis :
(S)-acetoin + NAD+ ← diacetyl + NADH + H+

(Z)-9-tricosene biosynthesis :
(15Z)-tetracos-15-enal + coenzyme A + NAD+ ← (Z)-15-tetracosenoyl-CoA + NADH + H+

1,2,4,5-tetrachlorobenzene degradation :
1,2,4,5-tetrachlorobenzene + NADH + oxygen + H+ → 1,3,4,6-tetrachloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2,4-trichlorobenzene degradation :
1,2,4-trichlorobenzene + NADH + oxygen + H+ → 3,4,6-trichloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2-dichlorobenzene degradation :
1,2-dichlorobenzene + NADH + oxygen + H+ → 1,2-dichlorobenzene dihydrodiol + NAD+

1,3-dichlorobenzene degradation :
1,3-dichlorobenzene + NADH + oxygen + H+ → 3,5-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

1,4-dichlorobenzene degradation :
1,4-dichlorobenzene + NADH + oxygen + H+ → 3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

2,2'-dihydroxybiphenyl degradation :
2,2'-dihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3-trihydroxybiphenyl + NAD+ + H2O
2,2',3-trihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3,3'-tetrahydroxybiphenyl + NAD+ + H2O
2,3-dihydroxybenzoate + NADH + oxygen + 2 H+ → pyrogallol + CO2 + NAD+ + H2O

2,3-dihydroxypropane-1-sulfonate degradation :
(R)-2,3-dihydroxypropane 1-sulfonate + NAD+ ← 2-oxo-3-hydroxy-propane-1-sulfonate + NADH + H+

2,4,5-trichlorophenoxyacetate degradation :
2-hydroxy-1,4-benzoquinone + NADH + 2 H+ → 1,2,4-benzenetriol + NAD+
2,4,5-trichloro-phenoxyacetate + NADH + oxygen → 2,4,5-trichlorophenol + glyoxylate + NAD+ + H2O

2,4-dichlorotoluene degradation :
2,4-dichlorotoluene + NADH + oxygen + H+ → 4,6-dichloro-3-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+

2,4-dinitrotoluene degradation :
2,4-dinitrotoluene + NADH + oxygen → 4-methyl-5-nitrocatechol + nitrite + NAD+
2-hydroxy-5-methylquinone + NADH + 2 H+ → 2,4,5-trihydroxytoluene + NAD+

2,5-dichlorotoluene degradation :
2,5-dichlorotoluene + NADH + oxygen + H+ → 3,6-dichloro-4-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+

2,6-dinitrotoluene degradation :
2,6-dinitrotoluene + NADH + oxygen → 3-methyl-4-nitrocatechol + nitrite + NAD+

2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA :
2-oxoadipate + ammonium + NAD+ ← 2-aminomuconate + NADH + H2O + 2 H+

2-chlorobenzoate degradation :
2-chlorobenzoate + NADH + oxygen + H+ → catechol + chloride + CO2 + NAD+

2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis :
2-heptyl-4(1H)-quinolone + NADH + oxygen + H+ → 2-heptyl-3-hydroxy-4(1H)-quinolone + NAD+ + H2O

2-hydroxybiphenyl degradation :
2-hydroxybiphenyl + NADH + H+ + oxygen → biphenyl-2, 3-diol + NAD+ + H2O

2-isopropylphenol degradation :
2-isopropylphenol + NADH + oxygen + H+ → 3-isopropylcatechol + NAD+ + H2O

2-propylphenol degradation :
2-propylphenol + NADH + oxygen + H+ → 3-propylcatechol + NAD+ + H2O

3,3'-dithiodipropionate degradation :
2 3-mercaptopropionate + NAD+ ← 3,3'-dithiodipropionate + NADH + H+

3,4,6-trichlorocatechol degradation :
5-chloromaleylacetate + NADH → 2-maleylacetate + chloride + NAD+
2,5-dichloromaleylacetate + NADH → 5-chloromaleylacetate + chloride + NAD+

3,4-dichlorotoluene degradation :
3,4-dichlorotoluene + NADH + oxygen + H+ → 3,4-dichlorotoluene dihydrodiol + NAD+

3-chlorobenzoate degradation I (via chlorocatechol) :
3-chlorobenzoate + NADH + H+ + oxygen → 3-chloro-3,5-cyclohexadiene-l,2-diol-1-carboxylate + NAD+
3-chlorobenzoate + NADH + H+ + oxygen → 5-chloro-3,5-cyclohexadiene-l,2-diol-1-carboxylate + NAD+

3-chlorobenzoate degradation III (via gentisate) :
3-hydroxybenzoate + NADH + oxygen + H+ → gentisate + NAD+ + H2O

3-chlorotoluene degradation I :
3-chlorotoluene + NADH + oxygen + H+ → 5-chloro-3-methyl benzene dihydrodiol + NAD+

3-chlorotoluene degradation II :
3-chlorotoluene + NADH + H+ + oxygen → 3-chlorobenzyl alcohol + NAD+ + H2O

3-methylquinoline degradation :
3-methyl-2-oxo-1,2-dihydroquinoline + NADH + H+ + oxygen → 5,6-dihydrodiol-3-methyl-2-oxo-1,2-dihydroquinoline + NAD+

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate :
3-(3-hydroxyphenyl)propionate + NADH + H+ + oxygen → 3-(2,3-dihydroxyphenyl)propanoate + NAD+ + H2O
3-phenylpropanoate + NADH + oxygen + H+ → 3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate + NAD+

4,5-dichlorocatechol degradation :
5-chloromaleylacetate + NADH → 2-maleylacetate + chloride + NAD+

4-hydroxybenzoate biosynthesis I (eukaryotes) :
3-(4-hydroxyphenyl)lactate + NAD+ ← 4-hydroxyphenylpyruvate + NADH + H+

4-nitrophenol degradation II :
2-hydroxy-1,4-benzoquinone + NADH + 2 H+ → 1,2,4-benzenetriol + NAD+
4-nitrophenol + NADH + oxygen + 2 H+ → 4-nitrocatechol + NAD+ + H2O

4-nitrotoluene degradation I :
4-nitrotoluene + NADH + H+ + oxygen → 4-nitrobenzyl alcohol + NAD+ + H2O

4-toluenecarboxylate degradation :
4-toluenecarboxylate + NADH + H+ + oxygen → 4-carboxybenzyl alcohol + NAD+ + H2O
terephthalate + NADH + oxygen + H+ → (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate + NAD+

4-toluenesulfonate degradation I :
4-sulfobenzoate + NADH + oxygen → sulfite + protocatechuate + NAD+
4-toluenesulfonate + NADH + H+ + oxygen → 4-sulfobenzyl alcohol + NAD+ + H2O

4-toluenesulfonate degradation II :
4-toluenesulfonate + NADH + oxygen → sulfite + 4-methylcatechol + NAD+

5,5'-dehydrodivanillate degradation :
5,5'-dehydrodivanillate + NADH + oxygen + H+ → 2,2',3-trihydroxy-3'-methoxy-5,5'-dicarboxybiphenyl + formaldehyde + NAD+ + H2O

8-amino-7-oxononanoate biosynthesis I :
a glutaryl-[acp] methyl ester + NAD+ ← an enoylglutaryl-[acp] methyl ester + NADH + H+
a pimeloyl-[acp] methyl ester + NAD+ ← an enoylpimeloyl-[acp] methyl ester + NADH + H+

actinorhodin biosynthesis :
actinorhodin intermediate + NADH + FMN + 2 H+ + oxygen → actinorhodin + NAD+ + FMNH2

adamantanone degradation :
adamantanone + NADH + H+ + oxygen → 5-hydroxyadamantan-2-one + NAD+ + H2O
4-oxahomoadamantan-5-one + NADH + H+ + oxygen → 1-hydroxy-4-oxahomoadamantan-5-one + NAD+ + H2O
adamantanone + NADH + H+ + oxygen → 4-oxahomoadamantan-5-one + NAD+ + H2O
5-hydroxyadamantan-2-one + NADH + oxygen + H+ → 1-hydroxy-4-oxahomoadamantan-5-one + NAD+ + H2O

aerobic respiration II (cytochrome c) (yeast) , NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast) , NADH to cytochrome bd oxidase electron transport II , NADH to cytochrome bo oxidase electron transfer II :
NADH[in] + an ubiquinone[CCO-OUT-CCO-IN] + H+[in]NAD+[in] + an ubiquinol[CCO-OUT-CCO-IN]

alanine degradation II (to D-lactate) , heterolactic fermentation , mixed acid fermentation , superpathway of fermentation (Chlamydomonas reinhardtii) , superpathway of glucose and xylose degradation , vancomycin resistance I :
(R)-lactate + NAD+ ↔ pyruvate + NADH + H+

alkane biosynthesis II :
a long-chain aldehyde + coenzyme A + NAD+ ← a long-chain acyl-CoA + NADH + H+

aminopropanol phosphate biosynthesis II :
(R)-1-aminopropan-2-ol + NAD+ ← aminoacetone + NADH + H+

ammonia assimilation cycle I , glutamate biosynthesis IV :
2 L-glutamate + NAD+ ← L-glutamine + 2-oxoglutarate + NADH + H+

androstenedione degradation :
androsta-1,4-diene-3,17-dione + NADH + oxygen + H+ → 9α-hydroxyandrosta-1,4-diene-3,17-dione + NAD+ + H2O

aniline degradation :
N5-phenyl-L-glutamine + NADH + oxygen + H+ → γ-glutamylanilide diol + NAD+

arachidonate biosynthesis , docosahexanoate biosynthesis I :
(2E,8Z,11Z,14Z)-icosatetraenoyl-CoA + NADH + H+ → (8Z,11Z,14Z)-icosatrienoyl-CoA + NAD+

ascorbate recycling (cytosolic) :
2 monodehydroascorbate radical + NADH → 2 L-ascorbate + NAD+ + H+

asperlicin E biosynthesis :
asperlicin C + NADH + H+ + oxygen → asperlicin E + NAD+ + H2O

astaxanthin biosynthesis :
all-trans-β-carotene + NADH + oxygen + H+ → β-cryptoxanthin + NAD+ + H2O
β-cryptoxanthin + NADH + oxygen + H+ → zeaxanthin + NAD+ + H2O

benzene degradation :
benzene + NADH + H+ + oxygen → cis-1,2-dihydrobenzene-1,2-diol + NAD+

benzenesulfonate degradation :
benzenesulfonate + NADH + oxygen → sulfite + catechol + NAD+

benzoate degradation I (aerobic) :
benzoate + NADH + H+ + oxygen → 3,5-cyclohexadiene-1,2-diol-1-carboxylate + NAD+

biphenyl degradation :
biphenyl + NADH + oxygen + H+ → cis-3-phenylcyclohexa-3,5-diene-1,2-diol + NAD+

butanol and isobutanol biosynthesis (engineered) , pyruvate fermentation to butanol I :
n-butanol + NAD+ ← butanal + NADH + H+

caffeine degradation V (bacteria, via trimethylurate) :
1,3,7-trimethylurate + NADH + oxygen + 3 H+ → 1,3,7-trimethyl-5-hydroxyisourate + NAD+ + H2O

carbon disulfide oxidation II (aerobic) :
carbon disulfide + NADH + oxygen + 3 H+ → carbonyl sulfide + hydrogen sulfide + NAD+ + H2O

chlorobenzene degradation :
chlorobenzene + NADH + oxygen + H+ → 3-chlorobenzene dihydrodiol + NAD+

chlorosalicylate degradation :
4-chlorosalicylate + NADH + 2 H+ + oxygen → 4-chlorocatechol + CO2 + NAD+ + H2O
5-chlorosalicylate + NADH + 2 H+ + oxygen → 4-chlorocatechol + CO2 + NAD+ + H2O

cholesterol degradation to androstenedione I (cholesterol oxidase) :
cholest-4-en-3-one + NADH + oxygen + H+ → 3-oxocholest-4-en-26-ol + NAD+ + H2O
3-oxocholest-4-en-26-ol + NADH + H+ + oxygen → 3-oxocholest-4-en-26-al + NAD+ + 2 H2O

cholesterol degradation to androstenedione II (cholesterol dehydrogenase) :
cholest-4-en-3-one + NADH + oxygen + H+ → 3-oxocholest-4-en-26-ol + NAD+ + H2O
3-oxocholest-4-en-26-ol + NADH + H+ + oxygen → 3-oxocholest-4-en-26-al + NAD+ + 2 H2O

cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate :
trans-cinnamate + NADH + oxygen + H+ → (2E)-3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)prop-2-enoate + NAD+
3-hydroxy-trans-cinnamate + NADH + oxygen + H+ → 2,3-dihydroxy-trans-cinnamate + NAD+ + H2O

cis-dodecenoyl biosynthesis :
a cis5-dodecenoyl-[acp] + NAD+ ← a trans3-cis5-dodecenoyl-[acp] + NADH + H+

cis-vaccenate biosynthesis :
a cis-vaccen-2-enoyl-[acp] + NADH + H+ → a cis-vaccenoyl-[acp] + NAD+

cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) :
cobalt-precorrin-6B + NAD+ ← cobalt-precorrin-6A + NADH

cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) :
precorrin-3A + NADH + oxygen + H+ → precorrin-3B + NAD+ + H2O

dibenzo-p-dioxin degradation :
dibenzo-p-dioxin + NADH + H+ + oxygen → 4,4a-dihydroxy-dihydro-dibenzo-p-dioxin + NAD+

dibenzofuran degradation :
dibenzofuran + NADH + H+ + oxygen → 2,2',3-trihydroxybiphenyl + NAD+

dibenzothiophene desulfurization :
dibenzothiophene + NADH + H+ + oxygen → dibenzothiophene-5-oxide + NAD+ + H2O
dibenzothiophene-5-oxide + NADH + H+ + oxygen → dibenzothiophene-5,5-dioxide + NAD+ + H2O

dimethyl sulfide degradation I :
dimethyl sulfide + NADH + oxygen + H+ → methanethiol + formaldehyde + NAD+ + H2O

dimethyl sulfide degradation II (oxidation) , methanesulfonate degradation :
methanesulfonate + NADH + oxygen → formaldehyde + sulfite + NAD+ + H2O

dimethyl sulfone degradation :
dimethyl sulfoxide + NAD+ + H2O ← dimethyl sulfone + NADH + H+

diphenylamine degradation :
diphenylamine + NADH + oxygen + H+ → aniline + catechol + NAD+

docosahexanoate biosynthesis II :
eicosatrienoyl-2-enoyl CoA + NADH + H+ → eicosatrienoyl-CoA + NAD+

dTDP-β-L-noviose biosynthesis :
dTDP-β-L-noviose + NAD+ ← dTDP-4-dehydro-β-L-noviose + NADH + H+

ecdysone and 20-hydroxyecdysone biosynthesis :
3-dehydroecdysone + NADH + H+ → ecdysone + NAD+

ethanedisulfonate degradation :
ethanedisulfonate + NADH + oxygen → sulfoacetaldehyde + sulfite + NAD+ + H2O

Reactions known to both consume and produce the compound:

(+)-camphor biosynthesis :
(+)-borneol + NAD+ ↔ (+)-camphor + NADH + H+

(R)- and (S)-3-hydroxybutyrate biosynthesis , 3-hydroxypropanoate/4-hydroxybutanate cycle , glutaryl-CoA degradation , pyruvate fermentation to butanoate , pyruvate fermentation to butanol I , pyruvate fermentation to butanol II , pyruvate fermentation to hexanol :
(S)-3-hydroxybutanoyl-CoA + NAD+ ↔ acetoacetyl-CoA + NADH + H+

(R)-cysteate degradation , coenzyme M biosynthesis I :
(2R)-3-sulfolactate + NAD+ ↔ 3-sulfopyruvate + NADH + H+

(R,R)-butanediol biosynthesis , (R,R)-butanediol degradation :
(R,R)-2,3-butanediol + NAD+ ↔ (R)-acetoin + NADH + H+

(S,S)-butanediol biosynthesis , (S,S)-butanediol degradation :
(S,S)-2,3-butanediol + NAD+ ↔ (S)-acetoin + NADH + H+

1,2-dichloroethane degradation :
chloroacetaldehyde + NAD+ + H2O ↔ chloroacetate + NADH + 2 H+

1,2-propanediol biosynthesis from lactate (engineered) :
(S)-lactaldehyde + coenzyme A + NAD+ ↔ (S)-lactoyl-CoA + NADH + H+
(R)-lactaldehyde + coenzyme A + NAD+ ↔ (R)-lactoyl-CoA + NADH + H+

1,3-propanediol biosynthesis (engineered) , glycerol-3-phosphate shuttle , superpathway phosphatidate biosynthesis (yeast) :
sn-glycerol 3-phosphate + NAD+ ↔ dihydroxyacetone phosphate + NADH + H+

1,4-dichlorobenzene degradation :
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+
3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+ ↔ 3,6-dichlorocatechol + NADH + H+

1-butanol autotrophic biosynthesis , anaerobic energy metabolism (invertebrates, mitochondrial) , photosynthetic 3-hydroxybutyrate biosynthesis (engineered) , pyruvate fermentation to acetate II , pyruvate fermentation to acetate V , superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass :
pyruvate + coenzyme A + NAD+ ↔ acetyl-CoA + CO2 + NADH

2'-deoxy-α-D-ribose 1-phosphate degradation , 2-aminoethylphosphonate degradation I , 2-oxopentenoate degradation , threonine degradation IV , triethylamine degradation :
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

2,4,6-trichlorophenol degradation , 3,5-dichlorocatechol degradation , pentachlorophenol degradation :
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+

2-methylbutyrate biosynthesis :
2-methyl-3-hydroxybutyryl-CoA + NAD+ ↔ 2-methylacetoacetyl-CoA + NADH + H+

2-oxoglutarate decarboxylation to succinyl-CoA :
a [2-oxoglutarate dehydrogenase E2 protein] N6-dihydrolipoyl-L-lysine + NAD+ ↔ a [2-oxoglutarate dehydrogenase E2 protein] N6-lipoyl-L-lysine + NADH + H+

2-oxoisovalerate decarboxylation to isobutanoyl-CoA :
an [apo BCAA dehydrogenase E2 protein] N6-dihydrolipoyl-L-lysine + NAD+ ↔ an [apo BCAA dehydrogenase E2 protein] N6-lipoyl-L-lysine + NADH + H+

3-methylbutanol biosynthesis :
(2R,3S)-3-isopropylmalate + NAD+ ↔ (2S)-2-isopropyl-3-oxosuccinate + NADH + H+
3-methylbutanol + NAD+ ↔ 3-methylbutanal + NADH + H+

4-aminobutyrate degradation V :
L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+
4-hydroxybutanoate + NAD+ ↔ succinate semialdehyde + NADH + H+

4-toluenecarboxylate degradation :
4-carboxybenzaldehyde + NAD+ + H2O ↔ terephthalate + NADH + 2 H+
4-carboxybenzyl alcohol + NAD+ ↔ 4-carboxybenzaldehyde + NADH + H+

4-toluenesulfonate degradation I :
4-sulfobenzaldehyde + NAD+ + H2O ↔ 4-sulfobenzoate + NADH + 2 H+
4-sulfobenzyl alcohol + NAD+ ↔ 4-sulfobenzaldehyde + NADH + H+

5-dehydro-4-deoxy-D-glucuronate degradation :
2-dehydro-3-deoxy-D-gluconate + NAD+ ↔ 3-deoxy-D-glycero-2,5-hexodiulosonate + NADH + H+

acetaldehyde biosynthesis I , acetoin degradation , chitin degradation to ethanol , ethanol degradation II , pyruvate fermentation to ethanol II :
ethanol + NAD+ ↔ acetaldehyde + NADH + H+

acetone degradation III (to propane-1,2-diol) , methylglyoxal degradation III :
(S)-propane-1,2-diol + NAD+ ↔ acetol + NADH + H+

acetylene degradation :
ethanol + NAD+ ↔ acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

adenosine nucleotides degradation I :
IMP + NAD+ + H2O ↔ XMP + NADH + H+
xanthine + NAD+ + H2O ↔ urate + NADH + H+

adenosine nucleotides degradation II , caffeine degradation III (bacteria, via demethylation) , guanosine nucleotides degradation I , guanosine nucleotides degradation II , guanosine nucleotides degradation III , theophylline degradation :
xanthine + NAD+ + H2O ↔ urate + NADH + H+

aerobic respiration I (cytochrome c) , aerobic respiration III (alternative oxidase pathway) , Fe(II) oxidation , NADH to cytochrome bd oxidase electron transfer I , NADH to cytochrome bo oxidase electron transfer I :
NADH[in] + an ubiquinone[CCO-OUT-CCO-IN] + 5 H+[in]NAD+[in] + an ubiquinol[CCO-OUT-CCO-IN] + 4 H+[out]

alanine degradation II (to D-lactate) , ethylene biosynthesis IV , glutamate degradation I :
L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+

alanine degradation IV :
L-alanine + NAD+ + H2O ↔ ammonium + pyruvate + NADH + H+

anaerobic energy metabolism (invertebrates, cytosol) , aspartate degradation II , C4 photosynthetic carbon assimilation cycle, NAD-ME type , formaldehyde assimilation I (serine pathway) , glyoxylate cycle , incomplete reductive TCA cycle , pyruvate fermentation to propionate I , reductive TCA cycle I , reductive TCA cycle II , superpathway of glyoxylate cycle and fatty acid degradation , TCA cycle I (prokaryotic) , TCA cycle II (plants and fungi) , TCA cycle III (animals) , TCA cycle IV (2-oxoglutarate decarboxylase) , TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) , TCA cycle VI (obligate autotrophs) :
(S)-malate + NAD+ ↔ oxaloacetate + NADH + H+

androstenedione degradation :
propanal + coenzyme A + NAD+ ↔ propanoyl-CoA + NADH + H+

benzoate biosynthesis II (CoA-independent, non-β-oxidative) , benzoate biosynthesis III (CoA-dependent, non-β-oxidative) , mandelate degradation I :
benzaldehyde + NAD+ + H2O ↔ benzoate + NADH + 2 H+

benzoyl-CoA degradation I (aerobic) , phenylacetate degradation I (aerobic) :
3-hydroxyadipyl-CoA + NAD+ ↔ 3-oxoadipyl-CoA + NADH + H+

benzoyl-CoA degradation II (anaerobic) :
3-hydroxypimeloyl-CoA + NAD+ ↔ 3-oxopimeloyl-CoA + NADH + H+
6-hydroxycyclohex-1-ene-1-carbonyl-CoA + NAD+ ↔ 6-oxocyclohex-1-ene-1-carbonyl-CoA + NADH + H+

benzoyl-CoA degradation III (anaerobic) :
3-hydroxypimeloyl-CoA + NAD+ ↔ 3-oxopimeloyl-CoA + NADH + H+

β myrcene degradation :
geraniol + NAD+ ↔ geranial + NADH + H+
geranial + NAD+ + H2O ↔ geranate + NADH + 2 H+

Bifidobacterium shunt :
(S)-lactate + NAD+ ↔ pyruvate + NADH + H+
D-glyceraldehyde 3-phosphate + NAD+ + phosphate ↔ 1,3-bisphospho-D-glycerate + NADH + H+

butanol and isobutanol biosynthesis (engineered) , pyruvate fermentation to isobutanol (engineered) , valine degradation II :
isobutanol + NAD+ ↔ isobutanal + NADH + H+

cholate degradation (bacteria, anaerobic) :
deoxycholyl-CoA + NAD+ ↔ 3-oxo-deoxycholyl-CoA + NADH + H+
3-oxo-deoxycholyl-CoA + NAD+ ↔ 3-oxo-Δ4-deoxycholyl-CoA + NADH + H+
3-oxo-Δ4-deoxycholyl-CoA + NAD+ ↔ 3-oxo-Δ4,6-cholyl-CoA + NADH + H+
3-oxo-cholyl-CoA + NAD+ ↔ 3-oxo-Δ4-cholyl-CoA + NADH + H+

choline degradation I , choline degradation IV , glycine betaine biosynthesis I (Gram-negative bacteria) , glycine betaine biosynthesis II (Gram-positive bacteria) , glycine betaine biosynthesis III (plants) :
betaine aldehyde + NAD+ + H2O ↔ glycine betaine + NADH + 2 H+

cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) , siroheme biosynthesis :
precorrin-2 + NAD+ ↔ sirohydrochlorin + NADH + 2 H+

crotonate fermentation (to acetate and cyclohexane carboxylate) :
3-hydroxypimeloyl-CoA + NAD+ ↔ 3-oxopimeloyl-CoA + NADH + H+
6-hydroxycyclohex-1-ene-1-carbonyl-CoA + NAD+ ↔ 6-oxocyclohex-1-ene-1-carbonyl-CoA + NADH + H+
(S)-3-hydroxybutanoyl-CoA + NAD+ ↔ acetoacetyl-CoA + NADH + H+

D-carnitine degradation I :
D-carnitine + NAD+ ↔ 3-dehydrocarnitine + NADH + H+

D-carnitine degradation II , L-carnitine degradation II :
L-carnitine + NAD+ ↔ 3-dehydrocarnitine + NADH + H+

D-fructuronate degradation :
D-mannonate + NAD+ ↔ D-fructuronate + NADH + H+

D-galacturonate degradation I :
D-altronate + NAD+ ↔ D-tagaturonate + NADH + H+

D-galacturonate degradation III :
aldehydo-D-galacturonate + NADH + H+aldehydo-L-galactonate + NAD+

D-glucuronate degradation I :
L-gulonate + NAD+ ↔ 3-keto-L-gulonate + NADH + H+

D-sorbitol degradation I :
D-sorbitol + NAD+ ↔ keto-D-fructose + NADH + H+

D-sorbitol degradation II , L-sorbose degradation :
D-sorbitol 6-phosphate + NAD+ ↔ D-fructose 6-phosphate + NADH + H+

dehydrophos biosynthesis , fosfomycin biosynthesis , phosphinothricin tripeptide biosynthesis :
2-hydroxyethylphosphonate + NAD+ ↔ phosphonoacetaldehyde + NADH + H+

ethanol degradation I :
ethanol + NAD+ ↔ acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

ethylbenzene degradation (anaerobic) :
(S)-1-phenylethanol + NAD+ ↔ acetophenone + NADH + H+

ethylene glycol degradation :
ethylene glycol + NAD+ ↔ glycolaldehyde + NADH + H+

folate transformations I :
glycine + a tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + ammonium + CO2 + NADH
an N5-methyl-tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + NADH + H+

folate transformations II :
glycine + a tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + ammonium + CO2 + NADH
an N5-methyl-tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + NADH + H+

formaldehyde assimilation III (dihydroxyacetone cycle) , glycerol degradation to butanol , glycolysis I (from glucose 6-phosphate) , glycolysis II (from fructose 6-phosphate) , glycolysis III (from glucose) , glycolysis IV (plant cytosol) , glycolysis VI (metazoan) , sucrose biosynthesis I (from photosynthesis) :
D-glyceraldehyde 3-phosphate + NAD+ + phosphate ↔ 1,3-bisphospho-D-glycerate + NADH + H+

formate oxidation to CO2 , oxalate degradation III :
formate + NAD+ ↔ CO2 + NADH

galactitol degradation :
galactitol 1-phosphate + NAD+ ↔ D-tagatofuranose 6-phosphate + NADH + H+

galactose degradation IV :
D-sorbitol + NAD+ ↔ keto-D-fructose + NADH + H+
galactitol + NAD+ ↔ L-xylo-3-hexulose + NADH + H+

γ-hexachlorocyclohexane degradation :
2,5-dichloro-2,5-cyclohexadiene-1,4-diol + NAD+ ↔ 2,5-dichloro-p-quinol + NADH + H+

geraniol and nerol degradation :
geraniol + NAD+ ↔ geranial + NADH + H+
geranial + NAD+ + H2O ↔ geranate + NADH + 2 H+
nerol + NAD+ ↔ neral + NADH + H+

gluconeogenesis I :
(S)-malate + NAD+ ↔ oxaloacetate + NADH + H+
D-glyceraldehyde 3-phosphate + NAD+ + phosphate ↔ 1,3-bisphospho-D-glycerate + NADH + H+

gluconeogenesis III :
(S)-malate + NAD+ ↔ oxaloacetate + NADH + H+
D-glyceraldehyde 3-phosphate + NAD+ + phosphate ↔ 1,3-bisphospho-D-glycerate + NADH + H+

glutamate degradation V (via hydroxyglutarate) :
L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+
(R)-2-hydroxyglutarate + NAD+ ↔ 2-oxoglutarate + NADH + H+

glycerol degradation II , glycerol degradation V :
glycerol + NAD+ ↔ dihydroxyacetone + NADH + H+

glycerol degradation III :
1,3-propanediol + NAD+ ↔ 3-hydroxypropionaldehyde + NADH + H+

glycine cleavage :
a [glycine-cleavage complex H protein] N6-dihydrolipoyl-L-lysine + NAD+ ↔ a [glycine-cleavage complex H protein] N6-lipoyl-L-lysine + NADH + H+

glycocholate metabolism (bacteria) :
cholate + NAD+ ↔ 3-dehydrocholate + NADH + H+
cholate + NAD+ ↔ 3α,12α-dihydroxy-7-oxo-5β-cholan-24-oate + NADH + H+

glycolate and glyoxylate degradation I :
D-glycerate + NAD+ ↔ tartronate semialdehyde + NADH + H+

guanosine ribonucleotides de novo biosynthesis :
IMP + NAD+ + H2O ↔ XMP + NADH + H+

heterolactic fermentation :
ethanol + NAD+ ↔ acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+
(S)-lactate + NAD+ ↔ pyruvate + NADH + H+
D-glyceraldehyde 3-phosphate + NAD+ + phosphate ↔ 1,3-bisphospho-D-glycerate + NADH + H+

hydrogen oxidation II (aerobic, NAD) , hydrogen production II :
NAD+ + H2 ↔ NADH + H+

In Reactions of unknown directionality:

dimethyl sulfoxide degradation :
dimethyl sulfoxide + NADH + H+ = dimethyl sulfide + NAD+ + H2O

L-galactonate degradation :
aldehydo-L-galactonate + NAD+ = D-tagaturonate + NADH + H+

methanol oxidation to formaldehyde II :
methanol + NAD+ = formaldehyde + NADH + H+

sulfoacetaldehyde degradation II :
sulfoacetaldehyde + NAD+ + H2O = sulfoacetate + NADH + 2 H+

Not in pathways:
trimethylamine N-oxide + NADH + 2 H+ = trimethylamine + NAD+ + H2O
hydrogen peroxide + NADH + H+ = NAD+ + 2 H2O
Cu2+ + NADH = Cu+ + NAD+ + H+
hybrid-cluster proteinox + NADH = hybrid-cluster proteinred + NAD+
(S)-usnate + NADH + 2 H+ = reduced-(S)-usnate + NAD+
methylglyoxal + NADH + H+ = acetol + NAD+
3-nitrotoluene + NADH + oxygen = 4-methylcatechol + nitrite + NAD+
1,2,3-trichlorobenzene + NADH + oxygen + H+ = 1,2,3-trichlorobenzene dihydrodiol + NAD+
phenylacetate + NADH + oxygen + H+ = 2-hydroxyphenylacetate + NAD+ + H2O
phenanthrene + NADH + H+ + oxygen = (+)-cis-3,4-dihydrophenanthrene-3,4-diol + NAD+
a quinone + NADH = a semiquinone + NAD+
docosapentaenoyl-2-enoyl [acp] + NADH + H+ = a docosapentaenoyl [acp] + NAD+
methyl red + 2 NADH + 2 H+ = anthranilate + N,N'-dimethyl-p-phenylenediamine + 2 NAD+
L-dopa + 2 NADH = 3-(2,3-dihydroxyphenyl)propanoate + ammonium + 2 NAD+
NADH + an oxidized electron acceptor + H+ = NAD+ + a reduced electron acceptor
NADH + an electron-transfer-related quinone + H+ = NAD+ + an electron-transfer-related quinol
menadione + NADH + H+ = menadiol + NAD+
11-deoxycorticosterone + NADH + H+ = 4-pregnen-20,21-diol-3-one + NAD+
syringaldehyde + NAD+ + H2O = syringate + NADH + 2 H+
2,5-bis-hydroxymethylfuran + NAD+ = 5-hydroxymethylfurfural + NADH + H+
(R)-mandelate + NAD+ = phenylglyoxylate + NADH + H+
UDP-N-acetyl-α-D-glucosamine + NAD+ = UDP-2-deoxy-2-acetamido-3-dehydro-α-D-glucopyranose + NADH + H+
a [protein]-L-arginine + NAD+ = a protein-Nω-(ADP-D-ribosyl)-L-arginine + nicotinamide + H+
a [histone]-N6-acetyl-L-lysine + NAD+ + H2O = a [histone]-L-lysine + 3''-O-acetyl-ADP-ribose + nicotinamide
a long-chain (3S)-3-hydroxyacyl-CoA + NAD+ = a long-chain 3-oxoacyl-CoA + NADH + H+
ammonium + NAD+ + H2O = hydroxylamine + NADH + 2 H+
L-lysine + NAD+ = (S)-2,3,4,5-tetrahydropiperidine-2-carboxylate + ammonium + NADH + 2 H+
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
L-lysine + NAD+ = Δ1-piperideine-2-carboxylate + ammonium + NADH + 2 H+
L-serine + NAD+ + H2O = ammonium + hydroxypyruvate + NADH + H+
L-leucine + NAD+ + H2O = ammonium + 4-methyl-2-oxopentanoate + NADH + H+
glycine + NAD+ + H2O = ammonium + glyoxylate + NADH + H+
galactitol 1-phosphate + NAD+ = keto-L-tagatose 6-phosphate + NADH + H+
L-iditol + NAD+ = keto-L-sorbose + NADH + H+
L-arabinofuranose + NAD+ = L-arabinono-1,4-lactone + NADH + H+
L-arabitol + NAD+ = aldehydo-L-arabinose + NADH + H+
an aldopyranose + NAD+ = a D-aldonolactone + NADH + H+
(S)-3-hydroxyhexadecanoyl-CoA + NAD+ = 3-oxo-palmitoyl-CoA + NADH + H+
(2E,6E)-farnesol + NAD+ = (2E,6E)-farnesal + NADH + H+
2-benzyl-3-hydroxybutanedioate + NAD+ = 2-oxo-4-phenylbutanoate + CO2 + NADH
D-glucopyranose + NAD+ = D-glucono-1,5-lactone + NADH + H+
3-hydroxy-5-cis-tetradecenoyl-CoA + NAD+ = 3-keto-5-cis-tetradecenoyl-CoA + NADH + H+
(-)-trans-carveol + NAD+ = R-(-)-carvone + NADH + H+
L-isoleucine + NAD+ + H2O = ammonium + (S)-3-methyl-2-oxopentanoate + NADH + H+
1,2-propanediol 1-phosphate + NAD+ = hydroxyacetone phosphate + NADH + H+
L-phenylalanine + NAD+ + H2O = 2-oxo-3-phenylpropanoate + ammonium + NADH + H+
perillyl aldehyde + NAD+ + H2O = perillate + NADH + 2 H+
(S)-3-hydroxyoctanoyl-CoA + NAD+ = 3-oxooctanoyl-CoA + NADH + H+
(S)-3-hydroxytetradecanoyl-CoA + NAD+ = 3-oxo-myristoyl-CoA + NADH + H+
L-threonine + NAD+ = aminoacetone + CO2 + NADH
D-glucurono-6,3-lactone + NAD+ + 2 H2O = D-glucarate + NADH + 3 H+
prop-2-ynal + NAD+ + H2O = propynoate + NADH + 2 H+
S-hydroxymethylglutathione + NAD+ = S-formylglutathione + NADH + H+
L-pipecolate + NAD+ = Δ1-piperideine-2-carboxylate + NADH + 2 H+
3-aminopropanal + NAD+ + H2O = β-alanine + NADH + 2 H+
an (R)-2-hydroxycarboxylate + NAD+ = a 2-oxo carboxylate + NADH + H+
D-arabitol 1-phosphate + NAD+ = D-xylulose 5-phosphate + NADH + H+
nitrous oxide + NAD+ + H2O = 2 nitric oxide + NADH + H+
(2R,3S)-3-methylmalate + NAD+ = methyloxaloacetate + NADH + H+
pyrroline-hydroxy-carboxylate + NAD+ + 2 H2O = erythro-4-hydroxy-L-glutamate + NADH + H+
a (2S)-2-hydroxycarboxylate + NAD+ = a 2-oxo carboxylate + NADH + H+
testosterone + NAD+ = androst-4-ene-3,17-dione + NADH + H+
NAD+ = cyclic ADP-ribose + nicotinamide
(S)-2-amino-6-oxohexanoate + NAD+ + H2O = L-2-aminoadipate + NADH + 2 H+
butanoate + NAD+ = crotonate + NADH + H+
(R)-pantoate + NAD+ = (R)-4-dehydropantoate + NADH + H+
ω-hydroxycaprate + NAD+ = 10-oxodecanoate + NADH + H+
a sphinganine + NAD+ = 3-dehydrosphinganine + NADH + H+
(S)-2,3-dihydrodipicolinate + NAD+ = dipicolinate + NADH + H+
1-pyrroline + NAD+ + 2 H2O = 4-aminobutanoate + NADH + 2 H+
a dihydrocarveol + NAD+ = a dihydrocarvone + NADH + H+
histidinol + 2 NAD+ + H2O = L-histidine + 2 NADH + 3 H+
D-threo-isocitrate + NAD+ = 2-oxoglutarate + CO2 + NADH
(-)-secoisolariciresinol + 2 NAD+ = (-)-matairesinol + 2 NADH + 2 H+
N-acetyl-α-D-glucosamine + NAD+ + H2O = N-acetyl-D-glucosaminate + NADH + 2 H+
(2S,3R,4S)-4-hydroxy-L-isoleucine + NAD+ = (2S,3R)-2-amino-3-methyl-4-ketopentanoate + NADH + H+
a reduced electron-transfer flavoprotein + NAD+ = an oxidized electron-transfer flavoprotein + NADH
(R)-mevalonate + NAD+ = mevaldate + NADH + H+
a phenol + NAD+ = an aryl aldehyde + NADH + H+
a reduced putidaredoxin + NAD+ = an oxidized putidaredoxin + NADH + H+
2-oxoaldehyde + NAD+ + H2O = a 2-oxo carboxylate + NADH + 2 H+
a long-chain alcohol + 2 NAD+ + H2O = a long-chain carboxylate + 2 NADH + 3 H+
4-ethylguaiacol + NAD+ = 4-vinylguaiacol + NADH + H+
1-ethyl-4-hydroxybenzene + NAD+ = 4-vinylphenol + NADH + H+
(3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate + NAD+ = protocatechuate + CO2 + NADH
4-phospho-hydroxy-L-threonine + NAD+ = 3-amino-1-hydroxyacetone 1-phosphate + CO2 + NADH
(2R,3S)-3-isopropylmalate + NAD+ = 4-methyl-2-oxopentanoate + CO2 + NADH
(R)-4-dehydropantoate + NAD+ + H2O = (R)-3,3-dimethylmalate + NADH + 2 H+
palmitaldehyde + coenzyme A + NAD+ = palmitoyl-CoA + NADH + H+
(-)-thujan-3-ol + NAD+ = (-)-thujan-3-one + NADH + H+
(+)-cis-sabinol + NAD+ = (+)-sabinone + NADH + H+
(6S,9R)-vomifoliol + NAD+ = (6R)-dehydrovomifoliol + NADH + H+
a (3R)-3-hydroxyacyl-[acyl-carrier protein] + NAD+ = a 3-oxoacyl-[acp] + NADH + H+
a 3β-hydroxy-δ5-steroid + NAD+ = a 3-oxo-δ5-steroid + NADH + H+
L-arabitol + NAD+ = L-ribulose + NADH + H+
androstan-3α,17β-diol + NAD+ = 17-β-hydroxyandrostan-3-one + NADH + H+
lithocholate + NAD+ = 3-oxo-5β-cholan-24-oate + NADH + H+
all-trans-retinal + NAD+ + H2O = all-trans-retinoate + NADH + 2 H+
NAD+ + FADH2 = NADH + FAD + 2 H+
9-cis-retinol + NAD+ = 9-cis-retinal + NADH + H+
a reduced flavin + NAD+ = an oxidized flavin + NADH + H+
a long-chain aldehyde + NAD+ + H2O = a long-chain carboxylate + NADH + 2 H+
7(8)-dihydrojusticidin B + NAD+ = justicidin B + NADH + H+
7(8) 7'(8')-tetrahydrojusticidin B + NAD+ = 7(8)-dihydrojusticidin B + NADH + H+
a diphthamide-[translation elongation factor 2] + NAD+ = N-(ADP-D-ribosyl)diphthamide-[translation elongation factor 2] + nicotinamide
a secondary alcohol + NAD+ = a ketone + NADH + H+
17-α-hydroxypregnenolone + NAD+ = pregn-5-ene-3,20-dione-17-ol + NADH + H+
2 a reduced [2Fe-2S] ferredoxin + NAD+ + H+ = 2 an oxidized [2Fe-2S] ferredoxin + NADH
(S)-dihydroorotate + NAD+ = orotate + NADH + H+
2-deoxygluconate + NAD+ = 3-dehydro-2-deoxy-D-gluconate + NADH + H+
4α-carboxy-5α-cholesta-7,24-dien-3β-ol + NAD+ = 5α-cholesta-7,24-dien-3-one + CO2 + NADH
4α-carboxy,4β,14α-dimethyl-9β,19-cyclo-5α-cholest-24-en-3β-ol + NAD+ = 4α,14α-dimethyl-9β,19-cyclo-5α-cholest-24-en-3-one + CO2 + NADH
galactitol + NAD+ = keto-D-tagatose + NADH + H+
trans-2-hexenol + NAD+ = trans-2-hexenal + NADH + H+
pregnenolone + NAD+ = progesterone + NADH + H+
a reduced transferrin + NAD+ = an oxidized transferrin + NADH + H+
D-altritol + NAD+ = D-psicose + NADH + H+
L-sorbitol + NAD+ = L-fructose + NADH + H+
xylitol + NAD+ = L-xylulose + NADH + H+
phthalate 4,5-cis-dihydrodiol + NAD+ = 4,5-dihydroxyphthalate + NADH + H+
2-formylbenzoate + NAD+ + H2O = phthalate + NADH + 2 H+
D-arabitol 5-phosphate + NAD+ = D-ribulose 5-phosphate + NADH + H+
an aryl aldehyde + NAD+ + H2O = an aromatic carboxylate + NADH + H+
1,2,3-trichlorobenzene dihydrodiol + NAD+ = 3,4,5-trichlorocatechol + NADH + 2 H+
ADP-D-ribosyl(n)-acceptor + NAD+ = ADP-D-ribosyl(n+1)-acceptor + nicotinamide + H+
D-Iditol + NAD+ = keto-D-sorbose + NADH + H+
meso-tartrate + NAD+ = 2-hydroxy-3-oxosuccinate + NADH + H+
a dinitrogen reductase + NAD+ = ADP-D-ribosyl-(dinitrogen reductase) + nicotinamide
a D-threo-aldose + NAD+ = a D-threo-aldono-1,5-lactone + NADH + H+
sulcatol + NAD+ = sulcatone + NADH + H+
trans-4-hydroxycyclohexanecarboxylate + NAD+ = 4-oxocyclohexanecarboxylate + NADH + H+
3-α-hydroxy-5-β-androstane-17-one + NAD+ = 5-β-androstane-3,17-dione + NADH + H+
(S)-2-hydroxystearate + NAD+ = 2-oxostearate + NADH + H+
cis-1,2-dihydro-3-ethylcatechol + NAD+ = 3-ethylcatechol + NADH + H+
phenylglyoxylate + coenzyme A + NAD+ = benzoyl-CoA + CO2 + NADH
2 cob(I)alamin + NAD+ + H+ = 2 cob(II)alamin + NADH
2 cob(II)alamin + NAD+ = 2 aquacob(III)alamin + NADH
3-mercapto-2-mercaptomethylpropanoate + NAD+ = asparagusate + NADH + H+
2 L-cysteine + NAD+ = L-cystine + NADH + H+
1,2-dihydroxy-6-methylcyclohexa-3,5-dienecarboxylate + NAD+ = CO2 + 3-methylcatechol + NADH
cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene + NAD+ = 1,2-dihydroxydibenzothiophene + NADH + H+
2 hydroxylamine + 2 NAD+ = hyponitrous acid + 2 NADH + 2 H+
D-arabitol + NAD+ = D-ribulose + NADH + H+
(2S)-2-{[1-(R)-carboxyethyl]amino}pentanoate + NAD+ + H2O = pyruvate + L-norvaline + NADH + H+
melilotate + NAD+ = 2-coumarate + NADH + H+
7,8-dihydro-7,8-dihydroxykynurenate + NAD+ = 7,8-dihydroxykynurenate + NADH
(+)-cis-3,4-dihydrophenanthrene-3,4-diol + NAD+ = phenanthrene-3,4-diol + NADH + H+
meso-tartrate + NAD+ = dihydroxyfumarate + NADH + H+
a 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + NAD+ = a 1-acyl-2-linoleoyl-sn-glycero-3-phosphocholine + NADH + H+
succinate + NAD+ = fumarate + NADH + H+
5,12-dihydroxanthommatin + NAD+ = xanthommatin + NADH + H+
(-)-ephedrine + NAD+ = (R)-2-methylimino-1-phenylpropan-1-ol + NADH + H+
trans-4-hydroxy-L-proline + NAD+ = 4-oxoproline + NADH + 2 H+
(R)-2-hydroxystearate + NAD+ = 2-oxostearate + NADH + H+
2-butyne-1,4-diol + NAD+ = 4-hydroxy-2-butynal + NADH + H+
prostaglandin E2 + NAD+ = (5Z)-(15S)-11-α-hydroxy-9,15-dioxoprosta-13-enoate + NADH + H+
pregnan-21-ol + NAD+ = pregnan-21-al + NADH + H+
(1S,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylate + NAD+ = (1S,4S)-4-hydroxy-3-oxocyclohexane-1-carboxylate + NADH + H+
trans-cyclohexane-1,2-diol + NAD+ = 2-hydroxycyclohexan-1-one + NADH + H+
cyclopentanol + NAD+ = cyclopentanone + NADH + H+
α-D-xylopyranose + NAD+ = D-xylonolactone + NADH + H+
diiodo-4-hydroxyphenyl-lactate + NAD+ = diiodo-4-hydroxyphenylpyruvate + NADH + H+
(R)-3,3-dimethylmalate + NAD+ = CO2 + 3-methyl-2-oxobutanoate + NADH
D-Apiitol + NAD+ = D-apiose + NADH
2-hydroxyadipate + NAD+ = 2-oxoadipate + NADH + H+
hexadecanol + NAD+ = palmitaldehyde + NADH + H+
2-hydroxymalonate + NAD+ = oxomalonate + NADH + H+
L-threonate + NAD+ = 3-dehydro-L-threonate + NADH + H+
an N-acyl-D-mannosamine + NAD+ + H+ = an N-acyl-D-mannosaminolactone + NADH
octan-1-ol + NAD+ = octanal + NADH + H+

In Transport reactions:
NAD+[extracellular space]NAD+[periplasmic space] ,
Na+[in] + NADH + an ubiquinone + H+ → Na+[out] + NAD+ + an ubiquinol

In Redox half-reactions:
NAD+[in] + H+[in] + 2 e- → NADH[in]

Enzymes activated by NAD+, sorted by the type of activation, are:

Activator (Allosteric) of: UDP-D-apiose synthase [Molhoj03] , UDP-D-xylose synthase [Molhoj03]

Activator (Mechanism unknown) of: α-galactosidase [Burstein71, Comment 1] , acetaldehyde dehydrogenase [Shone81] , (+)-trans-carveol dehydrogenase [Bouwmeester98] , dTDP-glucose 4,6-dehydratase [Chen09b] , manganese-oxidizing peroxidase [Anderson09] , GDP-D-mannose-5''-epimerase [Watanabe06b] , GDP-D-mannose-3'',5''-epimerase [Wolucka03]

Enzymes inhibited by NAD+, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: D-mannonate oxidoreductase [Portalier72a, MandrandBerthel77] , malate:quinone oxidoreductase [Narindrasorasak79] , NADH:ubiquinone oxidoreductase [Euro09a] , L-aspartate oxidase [Griffith75, Nasu82, Tedeschi99, Comment 2] , fumarase [Payne79] , glycerol 3-phosphate dehydrogenase [Albertyn92] , FMN reductase (NADH) [Iwaki13] , NADP+-dependent methylenetetrahydrofolate dehydrogenase [OBrien73] , glutamate synthase (NADH-dependent) [Boland77]

Inhibitor (Uncompetitive) of: malate dehydrogenase, NAD-requiring [Wang07a]

Inhibitor (Allosteric) of: citrate synthase

Inhibitor (Mechanism unknown) of: glutaminase B [Prusiner76a] , 3-dehydroquinate synthase , pyruvate dehydrogenase [Graham89, Comment 3] , nitrite reductase [Comment 4] , L-lactate dehydrogenase [Davies72] , L-aspartate oxidase [Hosokawa83]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: UDP-glucose 4-epimerase , dTDP-glucose 4,6-dehydratase , dTDP-glucose 4,6-dehydratase , 3-dehydroquinate synthase , 6-phospho-β-D-glucosyl-(1,4)-D-glucose glucohydrolase , monoacetylchitobiose-6-phosphate hydrolase , UDP-glucose 4,6-dehydratase , UDP-xylose synthase , dTDP-glucose 4,6-dehydratase , UDP-N-acetylglucosamine 4,6-dehydratase , UDP-glucuronate 4-epimerase , NAD-dependent GDP-N-acetylglucosamine 4.6-dehydratase , L-lysine cyclodeaminase , UDP-N-acetylglucosamine C-6 dehydratase , 2-deoxy-scyllo-inosose synthase , 2-deoxy-scyllo-inosose synthase , dTDP-glucose 4,6-dehydratase , carnitine monooxygenase , urocanase , ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase , methanol dehydrogenase , CDP-D-glucose-4,6-dehydratase , UDP-N-acetylglucosamine 4-epimerase , UDP-N-acetylglucosamine C4-epimerase , UDP-N-acetylglucosamine C4-epimerase , UDP-galactose 4-epimerase , GDP-D-mannose:GDP-L-gulose epimerase , UDP-galactose 4-epimerase , fluorene 1,2-dioxygenase , betaine aldehyde dehydrogenase , 6-endo-hydroxycineole dehydrogenase , L-carnitine dehydrogenase , L-lactate dehydrogenase , 3-dehydroquinate synthase , UDP-D-glucose/UDP-D-galactose 4-epimerase , D-lactate dehydrogenase , 2-hydroxycyclohexanecarboxyl-CoA dehydrogenase , UDP-sulfoquinovose synthase , GDP-D-mannose-3'',5''-epimerase , fluorene monooxygenase , 1,10-dihydro-1,10-dihydroxyfluoren-9-one dehydrogenase , malonate semialdehyde dehydrogenase , indole-3-lactate dehydrogenase , sarcosine oxidase , urocanase , ornithine cyclodeaminase , ornithine cyclodeaminase


References

Albertyn92: Albertyn J, van Tonder A, Prior BA (1992). "Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae." FEBS Lett 308(2);130-2. PMID: 1499720

Anderson09: Anderson CR, Johnson HA, Caputo N, Davis RE, Torpey JW, Tebo BM (2009). "Mn(II) oxidation is catalyzed by heme peroxidases in "Aurantimonas manganoxydans" strain SI85-9A1 and Erythrobacter sp. strain SD-21." Appl Environ Microbiol 75(12);4130-8. PMID: 19411418

Boland77: Boland MJ, Benny AG (1977). "Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules." Eur J Biochem 79(2);355-62. PMID: 21790

Bouwmeester98: Bouwmeester HJ, Gershenzon J, Konings MC, Croteau R (1998). "Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration Of enzyme activities and their changes with development." Plant Physiol 117(3);901-12. PMID: 9662532

Burstein71: Burstein C, Kepes A (1971). "The alpha-galactosidase from Escherichia coli K12." Biochim Biophys Acta 1971;230(1);52-63. PMID: 5543331

Chen09b: Chen YL, Chen YH, Lin YC, Tsai KC, Chiu HT (2009). "Functional characterization and substrate specificity of spinosyn rhamnosyltransferase by in vitro reconstitution of spinosyn biosynthetic enzymes." J Biol Chem 284(11);7352-63. PMID: 19126547

Davies72: Davies DD, Davies S (1972). "Purification and properties of L(+)-lactate dehydrogenase from potato tubers." Biochem J 129(4);831-9. PMID: 4144124

Euro09a: Euro L, Belevich G, Bloch DA, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2009). "The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli." Biochim Biophys Acta 1787(1);68-73. PMID: 19061856

Graham89: Graham LD, Packman LC, Perham RN (1989). "Kinetics and specificity of reductive acylation of lipoyl domains from 2-oxo acid dehydrogenase multienzyme complexes." Biochemistry 1989;28(4);1574-81. PMID: 2655695

Griffith75: Griffith GR, Chandler JL, Gholson RK (1975). "Studies on the de novo biosynthesis of NAD in Escherichia coli. The separation of the nadB gene product from the nadA gene product and its purification." Eur J Biochem 54(1);239-45. PMID: 238844

Hosokawa83: Hosokawa Y, Mitchell E, Gholson RK (1983). "Higher plants contain L-asparate oxidase, the first enzyme of the Escherichia coli quinolinate synthetase system." Biochem Biophys Res Commun 111(1);188-93. PMID: 6338879

Iwaki13: Iwaki H, Grosse S, Bergeron H, Leisch H, Morley K, Hasegawa Y, Lau PC (2013). "Camphor Pathway Redux: Functional Recombinant Expression of 2,5- and 3,6-Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453 with Their Cognate Flavin Reductase Catalyzing Baeyer-Villiger Reactions." Appl Environ Microbiol. PMID: 23524667

Jackson81a: Jackson RH, Cole JA, Cornish-Bowden A (1981). "The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction." Biochem J 1981;199(1);171-8. PMID: 6279095

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

MandrandBerthel77: Mandrand-Berthelot MA, Lagarde AE (1977). ""Hit-and-run" mechanism for D-glucuronate reduction catalyzed by D-mannonate:NAD oxidoreductase of Escherichia coli." Biochim Biophys Acta 1977;483(1);6-23. PMID: 195622

Molhoj03: Molhoj M, Verma R, Reiter WD (2003). "The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis." Plant J 35(6);693-703. PMID: 12969423

Nagao88: Nagao Y, Nakada T, Imoto M, Shimamoto T, Sakai S, Tsuda M, Tsuchiya T (1988). "Purification and analysis of the structure of alpha-galactosidase from Escherichia coli." Biochem Biophys Res Commun 1988;151(1);236-41. PMID: 2831880

Narindrasorasak79: Narindrasorasak S, Goldie AH, Sanwal BD (1979). "Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli." J Biol Chem 1979;254(5);1540-5. PMID: 368072

Nasu82: Nasu S, Wicks FD, Gholson RK (1982). "L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase." J Biol Chem 1982;257(2);626-32. PMID: 7033218

OBrien73: O'Brien WE, Brewer JM, Ljungdahl LG (1973). "Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum." J Biol Chem 1973;248(2);403-8. PMID: 4405422

Payne79: Payne M, Powley D, Harris B (1979). "Purification, characterization and the presumptive role of fumarase in the energy metabolism of Ascaris suum." J. Parasitol. 65 833-841.

Portalier72a: Portalier RC (1972). "[D-mannonate: NAD-oxidoreductase from Escherichia coli K12. Kinetic studies of the enzymatic mechanism]." Eur J Biochem 1972;30(2);220-33. PMID: 4351435

Prusiner76a: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Shone81: Shone CC, Fromm HJ (1981). "Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli." Biochemistry 1981;20(26);7494-501. PMID: 7034777

Tedeschi99: Tedeschi G, Negri A, Ceciliani F, Mattevi A, Ronchi S (1999). "Structural characterization of l-aspartate oxidase and identification of an interdomain loop by limited proteolysis." Eur J Biochem 260(3);896-903. PMID: 10103021

Wang07a: Wang J, Tan H, Zhao ZK (2007). "Over-expression, purification, and characterization of recombinant NAD-malic enzyme from Escherichia coli K12." Protein Expr Purif 53(1):97-103. PMID: 17215140

Watanabe06b: Watanabe K, Suzuki K, Kitamura S (2006). "Characterization of a GDP-d-mannose 3'',5''-epimerase from rice." Phytochemistry 67(4);338-46. PMID: 16413588

Wolucka03: Wolucka BA, Van Montagu M (2003). "GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants." J Biol Chem 278(48);47483-90. PMID: 12954627


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Thu Dec 18, 2014, BIOCYC13A.