twitter

MetaCyc Compound: L-alanine

Abbrev Name: ala

Synonyms: alanine, L-α-alanine, ala

Superclasses: an amino acid or its derivative an amino acid a neutral amino acid
an amino acid or its derivative an amino acid a non-polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an L-amino acid

Component of: AlaS-L-alanine

Chemical Formula: C3H7NO2

Molecular Weight: 89.094 Daltons

Monoisotopic Molecular Weight: 89.0476784741 Daltons

L-alanine compound structure

SMILES: CC([N+])C([O-])=O

InChI: InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1

InChIKey: InChIKey=QNAYBMKLOCPYGJ-REOHCLBHSA-N

Unification Links: CAS:56-41-7 , ChEBI:57972 , HMDB:HMDB00161 , IAF1260:33629 , KEGG:C00041 , MetaboLights:MTBLC57972 , PubChem:7311724

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -16.772158 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

5-N-acetylardeemin biosynthesis :
anthranilate + L-alanine + L-tryptophan + 3 ATP → ardeemin FQ + 3 AMP + 3 diphosphate + H2O + 2 H+

8-amino-7-oxononanoate biosynthesis I , 8-amino-7-oxononanoate biosynthesis II :
a pimeloyl-[acp] + L-alanine + H+ → 8-amino-7-oxononanoate + CO2 + a holo-[acyl-carrier protein]

8-amino-7-oxononanoate biosynthesis III :
pimeloyl-CoA + L-alanine + H+ → CO2 + 8-amino-7-oxononanoate + coenzyme A

bacilysin biosynthesis :
ATP + L-alanine + L-anticapsin → ADP + bacilysin + phosphate + H+

ergotamine biosynthesis :
lysergate + L-alanine + L-phenylalanine + L-proline + an unknown oxidized electron acceptor + H+ → ergotamine + an unknown reduced electron acceptor + 3 H2O

fumiquinazoline D biosynthesis :
fumiquinazoline F-indoline-2,3-diol + L-alanine + ATP → fumiquinazoline A + AMP + diphosphate + H2O + H+
anthranilate + L-tryptophan + L-alanine + 3 ATP → fumiquinazoline F + 3 AMP + 3 diphosphate + H2O + 2 H+

indole-3-acetyl-amide conjugate biosynthesis :
indole-3-acetate + L-alanine + ATP → indole-3-acetyl-alanine + AMP + diphosphate + H+

methanofuran biosynthesis :
4-(hydroxymethyl)-2-furancarboxaldehyde phosphate + L-alanine → 5-(aminomethyl)-3-furanmethanol phosphate + pyruvate

phosphinothricin tripeptide biosynthesis :
N-acetyl demethylphosphinothricin + 2 L-alanineN-acetyl-demethylphophinothricin tripeptide + 2 H2O

pyruvate fermentation to opines :
alanopine + NAD+ + H2O ← pyruvate + L-alanine + NADH + H+

tRNA charging :
a tRNAala + L-alanine + ATP + H+ → an L-alanyl-[tRNAala] + AMP + diphosphate

UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-DAP-containing) , UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing) :
L-alanine + UDP-N-acetyl-α-D-muramate + ATP → UDP-N-acetyl-α-D-muramoyl-L-alanine + ADP + phosphate + H+

γ-glutamyl cycle :
glutathione + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + L-cysteinyl-glycine

leukotriene biosynthesis :
leukotriene-C4 + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + leukotriene-D4

Not in pathways:
a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

rhizocticin A and B biosynthesis :
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acidL-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate

Not in pathways:
ATP + 2 an L-amino acid → ADP + a dipeptide + phosphate + H+

Reactions known to produce the compound:

indole-3-acetate activation I :
indole-3-acetyl-alanine + H2O → indole-3-acetate + L-alanine

isopropylamine degradation :
L-2-aminopropionaldehyde + NAD(P)+ + H2O → L-alanine + NAD(P)H + 2 H+

L-alanine biosynthesis III , molybdenum cofactor biosynthesis , thiazole biosynthesis I (E. coli) , thiazole biosynthesis II (Bacillus) :
an [L-cysteine desulfurase]-L-cysteine + L-cysteine → an [L-cysteine desulfurase] L-cysteine persulfide + L-alanine

L-tryptophan degradation I (via anthranilate) :
L-kynurenine + H2O → L-alanine + anthranilate + H+

L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde :
3-hydroxy-L-kynurenine + H2O → 3-hydroxyanthranilate + L-alanine + H+

L-tryptophan degradation XI (mammalian, via kynurenine) :
3-hydroxy-L-kynurenine + H2O → 3-hydroxyanthranilate + L-alanine + H+
L-kynurenine + H2O → L-alanine + anthranilate + H+

lupanine biosynthesis :
3 cadaverine + 4 pyruvate → 17-oxosparteine + 4 L-alanine + H+ + 3 H2O

muropeptide degradation :
L-alanyl-L-glutamate + H2O → L-alanine + L-glutamate

thio-molybdenum cofactor biosynthesis :
MoO2-molybdopterin cofactor + L-cysteine + an unknown reduced electron acceptor → thio-molybdenum cofactor + L-alanine + an unknown oxidized electron acceptor + H2O

[2Fe-2S] iron-sulfur cluster biosynthesis :
L-cystein desulfurase + L-cysteine → an S-sulfanyl-[L-cysteine desulfurase] + L-alanine
a [cysteine desulfurase]-S-sulfanyl-[disordered-form scaffold protein] complex + L-cysteine → an S-sulfanyl-[cysteine desulfurase]-S-sulfanyl-[disordered-form scaffold protein] complex + L-alanine

Not in pathways:
L-alanyl-L-aspartate + H2O → L-alanine + L-aspartate
L-alanyl-L-glutamine + H2O → L-alanine + L-glutamine
L-alanyl-glycine + H2O → L-alanine + glycine
L-alanyl-L-histidine + H2O → L-alanine + L-histidine
L-alanyl-L-leucine + H2O → L-alanine + L-leucine
L-alanyl-L-threonine + H2O → L-alanine + L-threonine
L-methionyl-L-alanine dipeptide + H2O → L-methionine + L-alanine
L-cysteine + an unsulfurated [sulfur carrier] → L-alanine + a sulfurated [sulfur carrier]
a C-terminal [protein]-L-alanine + H2O → L-alanine + a [protein] C-terminal amino acid

dimethylsulfoniopropanoate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

seed germination protein turnover , wound-induced proteolysis I :
a peptide with an N-terminal X-L-proline + H2O → a standard α amino acid + a peptide with an N-terminal L-proline + H+

Not in pathways:
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid

Reactions known to both consume and produce the compound:

2-aminoethylphosphonate degradation I , 2-aminoethylphosphonate degradation II :
pyruvate + (2-aminoethyl)phosphonate ↔ L-alanine + phosphonoacetaldehyde

4-aminobutyrate degradation IV , L-glutamate degradation IV :
4-aminobutanoate + pyruvate ↔ succinate semialdehyde + L-alanine

anaerobic energy metabolism (invertebrates, cytosol) :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
L-alanine ↔ D-alanine

β-alanine biosynthesis II , β-alanine degradation II :
3-oxopropanoate + L-alanine ↔ β-alanine + pyruvate

C4 photosynthetic carbon assimilation cycle, NAD-ME type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

C4 photosynthetic carbon assimilation cycle, PEPCK type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

γ-coniciene and coniine biosynthesis :
L-alanine + 5-oxooctanal ↔ 8-aminooctan-4-one + pyruvate

glycine biosynthesis III :
glyoxylate + L-alanine ↔ glycine + pyruvate

hypoglycin biosynthesis :
beta-methylenecyclopropyl pyruvate + L-alanine ↔ hypoglycin A + pyruvate

hypotaurine degradation :
pyruvate + hypotaurine ↔ L-alanine + 2-sulfinoacetaldehyde

indole-3-acetate biosynthesis I , indole-3-acetate biosynthesis II :
L-tryptophan + pyruvate ↔ L-alanine + indole-3-pyruvate

L-alanine biosynthesis I :
pyruvate + L-valine ↔ L-alanine + 3-methyl-2-oxobutanoate
L-alanine ↔ D-alanine

L-alanine biosynthesis II , L-alanine degradation II (to D-lactate) , L-alanine degradation III :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

L-alanine degradation I :
L-alanine ↔ D-alanine

L-alanine degradation IV :
L-alanine + NAD+ + H2O ↔ ammonium + pyruvate + NADH + H+

L-arginine degradation IX (arginine:pyruvate transaminase pathway) :
L-arginine + pyruvate ↔ 5-guanidino-2-oxo-pentanoate + L-alanine

L-histidine degradation V :
L-histidine + pyruvate ↔ imidazole-pyruvate + L-alanine

L-homophenylalanine biosynthesis :
L-phenylalanine + pyruvate ↔ 2-oxo-3-phenylpropanoate + L-alanine
L-homophenylalanine + pyruvate ↔ 2-oxo-4-phenylbutanoate + L-alanine

L-lysine degradation IX :
pyruvate + L-lysine ↔ L-alanine + (S)-2-amino-6-oxohexanoate

L-phenylalanine degradation III :
L-phenylalanine + pyruvate ↔ 2-oxo-3-phenylpropanoate + L-alanine

In Reactions of unknown directionality:

Not in pathways:
L-aspartate + H+ = CO2 + L-alanine
a 2,2-dialkylglycine + pyruvate + H+ = a dialkyl ketone + L-alanine + CO2
aminopentol + pyruvate = (3S,5R,10S,12R,14R,15S,16S)-3,5,10,14,15-pentahydroxy-12,16-dimethylicosan-2-one + L-alanine
N-acetylmuramoyl-L-alaninate + H2O = N-acetylmuramate + L-alanine
a ThiI sulfur-carrier protein + L-cysteine = an S-sulfanyl-[ThiI sulfur-carrier protein] + L-alanine
3-sulfinoalanine + H2O = L-alanine + sulfite + H+
L-selenocysteine + an unknown reduced electron acceptor = L-alanine + selenide + an unknown oxidized electron acceptor + 2 H+
2-amino-4-carboxypyrimidine + L-alanine = lathyrine + CO2 + H2O

Not in pathways:
L-arginine + a standard α amino acid + ATP = a dipeptide with N-terminal L-arginine + ADP + phosphate + H+

Not in pathways:
an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Transport reactions:
2 L-alanine[out] + 2 H+[out] ↔ 2 L-alanine[in] + 2 H+[in] ,
Na+[periplasmic space] + L-alanine[periplasmic space] → Na+[cytosol] + L-alanine[cytosol] ,
L-alanine[periplasmic space] + H+[periplasmic space]L-alanine[cytosol] + H+[cytosol] ,
L-alanine[cytosol]L-alanine[periplasmic space] ,
a non-polar amino acid[extracellular space] + ATP + H2O ↔ a non-polar amino acid[cytosol] + ADP + phosphate ,
an L-amino acid[cytosol]an L-amino acid[periplasmic space]

Enzymes activated by L-alanine, sorted by the type of activation, are:

Activator (Mechanism unknown) of: glutamate dehydrogenase (NAD-dependent) [Bonete96]

Enzymes inhibited by L-alanine, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: glutamine synthetase [Woolfolk67, Bender77, Dahlquist75]

Inhibitor (Allosteric) of: pyruvate kinase [Holwerda73]

Inhibitor (Mechanism unknown) of: 2-dehydro-3-deoxyphosphoheptonate aldolase , serine acetyltransferase [Hindson03] , L-proline:H+ symporter [MacMillan99] , 2-amino-4-oxopentanoate thiolase [Jeng74, Comment 1]

This compound has been characterized as an alternative substrate of the following enzymes: aspartate aminotransferase , transport of L-leucine , D-alanine transaminase , arginine-α-ketoglutarate transaminase , transport of a dipeptide , cysteine aminotransferase , ornithine racemase , dTDP-3,4-didehydro-2,6-dideoxy-α-D-glucose aminotransferase , jasmonyl-isoleucine synthetase , strombine synthase


References

Bender77: Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977). "Biochemical parameters of glutamine synthetase from Klebsiella aerogenes." J Bacteriol 129(2);1001-9. PMID: 14104

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Dahlquist75: Dahlquist FW, Purich DL (1975). "Regulation of Escherichia coli glutamine synthetase. Evidence for the action of some feedback modifiers at the active site of the unadenylylated enzyme." Biochemistry 14(9);1980-9. PMID: 235974

Hindson03: Hindson VJ, Shaw WV (2003). "Random-order ternary complex reaction mechanism of serine acetyltransferase from Escherichia coli." Biochemistry 42(10);3113-9. PMID: 12627979

Holwerda73: Holwerda DA, de Zwaan A (1973). "Kinetic and molecular characteristics of allosteric pyruvate kinase from muscle tissue of the sea mussel Mytilus edulis L." Biochim Biophys Acta 309(2);296-306. PMID: 4354457

Jeng74: Jeng IM, Somack R, Barker HA (1974). "Ornithine degradation in Clostridium sticklandii; pyridoxal phosphate and coenzyme A dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl coenzyme A." Biochemistry 1974;13(14);2898-903. PMID: 4407783

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

MacMillan99: MacMillan SV, Alexander DA, Culham DE, Kunte HJ, Marshall EV, Rochon D, Wood JM (1999). "The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli." Biochim Biophys Acta 1420(1-2);30-44. PMID: 10446288

Woolfolk67: Woolfolk CA, Stadtman ER (1967). "Regulation of glutamine synthetase. 3. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli." Arch Biochem Biophys 118(3);736-55. PMID: 4860415


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Fri May 29, 2015, BIOCYC13B.