Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
twitter

MetaCyc Compound: hydrogen carbonate

Synonyms: carbonate, CO3-2, CO32-, HCO3-, HCO3, bicarbonate

Superclasses: an ionan anionan inorganic anion
an ionan inorganic ionan inorganic anion

Chemical Formula: CHO3

Molecular Weight: 61.017 Daltons

Monoisotopic Molecular Weight: 62.000393930499996 Daltons

hydrogen carbonate compound structure

SMILES: C([O-])(=O)O

InChI: InChI=1S/CH2O3/c2-1(3)4/h(H2,2,3,4)/p-1

InChIKey: InChIKey=BVKZGUZCCUSVTD-UHFFFAOYSA-M

Unification Links: CAS:71-52-3, CAS:144-55-8, ChEBI:17544, ChemSpider:749, HMDB:HMDB00595, IAF1260:34509, KEGG:C00288, MetaboLights:MTBLC17544, PubChem:769

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -130.28094Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

3-hydroxypropanoate cycle , 3-hydroxypropanoate/4-hydroxybutanate cycle , candicidin biosynthesis , fatty acid biosynthesis initiation I , glyoxylate assimilation , jadomycin biosynthesis , octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) :
ATP + acetyl-CoA + hydrogen carbonate → malonyl-CoA + ADP + phosphate + H+

biotin-carboxyl carrier protein assembly :
a biotinylated [BCCP dimer] + hydrogen carbonate + ATP → a carboxylated-biotinylated [BCCP dimer] + ADP + phosphate + H+

cis-genanyl-CoA degradation :
cis-geranyl-CoA + hydrogen carbonate + ATP → 3-(4-methylpent-3-en-1-yl)-pent-2-enedioyl-CoA + ADP + phosphate + H+

cyanate degradation :
cyanate + hydrogen carbonate + H+ → carbamate + CO2

ethylbenzene degradation (anaerobic) :
acetophenone + hydrogen carbonate + 2 ATP + H2O → 3-oxo-3-phenylpropanoate + 2 ADP + 2 phosphate + 2 H+

gluconeogenesis II (Methanobacterium thermoautotrophicum) , gluconeogenesis III , incomplete reductive TCA cycle , itaconate biosynthesis , Methanobacterium thermoautotrophicum biosynthetic metabolism :
pyruvate + hydrogen carbonate + ATP → oxaloacetate + ADP + phosphate + H+

guadinomine B biosynthesis :
hydrogen carbonate + ATP → carboxyphosphate + ADP

inosine-5'-phosphate biosynthesis I , inosine-5'-phosphate biosynthesis III :
5-amino-1-(5-phospho-β-D-ribosyl)imidazole + ATP + hydrogen carbonateN5-carboxyaminoimidazole ribonucleotide + ADP + phosphate + 2 H+

L-arginine biosynthesis I (via L-ornithine) , L-arginine biosynthesis II (acetyl cycle) , L-arginine biosynthesis III (via N-acetyl-L-citrulline) , L-arginine biosynthesis IV (archaebacteria) , UMP biosynthesis :
2 ATP + L-glutamine + hydrogen carbonate + H2O → L-glutamate + carbamoyl phosphate + 2 ADP + phosphate + 2 H+

L-leucine degradation I :
3-methylcrotonyl-CoA + hydrogen carbonate + ATP → 3-methylglutaconyl-CoA + ADP + phosphate + H+

mycolate biosynthesis :
ATP + cerotoyl-CoA + hydrogen carbonate → 2-carboxy-cerotoyl-CoA + ADP + phosphate + H+

naphthalene degradation (anaerobic) :
naphthalene + hydrogen carbonate → 2-naphthoate + H2O

sitosterol degradation to androstenedione :
3-oxo-24-ethyl-cholest-4,24-dien-26-oyl-CoA + hydrogen carbonate + ATP → 3-oxo-24-(isopropanoyl)-cholest-4,24-dien-26-oyl-CoA + ADP + phosphate + H+

urea cycle :
2 ATP + hydrogen carbonate + ammonium → 2 ADP + carbamoyl phosphate + phosphate + 2 H+

Not in pathways:
pyrrole-2-carboxylate + H2O ← a pyrrole + hydrogen carbonate
cyanate + hydrogen carbonate + 3 H+ → ammonium + 2 CO2

Reactions known to produce the compound:

1,4-dihydroxy-6-naphthoate biosynthesis I , 1,4-dihydroxy-6-naphthoate biosynthesis II :
3-[(1-carboxyvinyl)oxy]benzoate + S-adenosyl-L-methionine + H2O → 6-amino-6-deoxyfutalosine + L-methionine + hydrogen carbonate + H+

2,4-dinitrotoluene degradation :
methylmalonate semialdehyde + coenzyme A + NAD+ + H2O → propanoyl-CoA + hydrogen carbonate + NADH + H+

4-toluenecarboxylate degradation :
(3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate + NAD+ + H2O → protocatechuate + hydrogen carbonate + NADH + H+

L-valine degradation I :
(S)-methylmalonate-semialdehyde + coenzyme A + NAD+ + H2O → propanoyl-CoA + hydrogen carbonate + NADH + H+

Not in pathways:
2-hydroxyethylphosphonate + oxygen → methylphosphonate + hydrogen carbonate + H+

Reactions known to both consume and produce the compound:

3-hydroxypropanoate cycle , 3-hydroxypropanoate/4-hydroxybutanate cycle , anaerobic energy metabolism (invertebrates, mitochondrial) , methylaspartate cycle , propanoyl CoA degradation I :
propanoyl-CoA + ATP + hydrogen carbonate ↔ (S)-methylmalonyl-CoA + ADP + phosphate + H+

C4 photosynthetic carbon assimilation cycle, NAD-ME type :
oxaloacetate + phosphate ↔ phosphoenolpyruvate + hydrogen carbonate
hydrogen carbonate + H+ ↔ CO2 + H2O

C4 photosynthetic carbon assimilation cycle, NADP-ME type :
oxaloacetate + phosphate ↔ phosphoenolpyruvate + hydrogen carbonate
hydrogen carbonate + H+ ↔ CO2 + H2O

C4 photosynthetic carbon assimilation cycle, PEPCK type :
oxaloacetate + phosphate ↔ phosphoenolpyruvate + hydrogen carbonate
hydrogen carbonate + H+ ↔ CO2 + H2O

CO2 fixation into oxaloacetate (anaplerotic) :
oxaloacetate + phosphate ↔ phosphoenolpyruvate + hydrogen carbonate
hydrogen carbonate + H+ ↔ CO2 + H2O

cyanate degradation :
hydrogen carbonate + H+ ↔ CO2 + H2O

ethylene biosynthesis V (engineered) , formaldehyde assimilation I (serine pathway) , L-glutamine biosynthesis III , Methanobacterium thermoautotrophicum biosynthetic metabolism , mixed acid fermentation , partial TCA cycle (obligate autotrophs) , reductive TCA cycle I :
oxaloacetate + phosphate ↔ phosphoenolpyruvate + hydrogen carbonate

gluconeogenesis II (Methanobacterium thermoautotrophicum) :
oxaloacetate + phosphate ↔ phosphoenolpyruvate + hydrogen carbonate
hydrogen carbonate + H+ ↔ CO2 + H2O

N6-L-threonylcarbamoyladenosine37-modified tRNA biosynthesis :
L-threonine + hydrogen carbonate + ATP ↔ L-threonylcarbamoyladenylate + diphosphate + H2O

Enzymes activated by hydrogen carbonate, sorted by the type of activation, are:

Activator (Mechanism unknown) of: threonylcarbamoyl-AMP synthase [Perrochia13], aminopeptidase [Strater99]

Enzymes inhibited by hydrogen carbonate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: cyanase [Anderson86], succinate dehydrogenase [Burke82] Inhibitor (Noncompetitive) of: phosphoenolpyruvate mutase [Seidel94]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: 1,4-dihydroxy-2-naphthoyl-CoA synthase, cyclopropane fatty acyl phospholipid synthase


References

Anderson86: Anderson PM, Little RM (1986). "Kinetic properties of cyanase." Biochemistry 25(7);1621-6. PMID: 3518792

Burke82: Burke JJ, Siedow JN, Moreland DE (1982). "Succinate Dehydrogenase : A Partial Purification from Mung Bean Hypocotyls and Soybean Cotyledons." Plant Physiol 70(6);1577-1581. PMID: 16662722

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Perrochia13: Perrochia L, Crozat E, Hecker A, Zhang W, Bareille J, Collinet B, van Tilbeurgh H, Forterre P, Basta T (2013). "In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya." Nucleic Acids Res 41(3);1953-64. PMID: 23258706

Seidel94: Seidel HM, Knowles JR (1994). "Interaction of inhibitors with phosphoenolpyruvate mutase: implications for the reaction mechanism and the nature of the active site." Biochemistry 33(18);5641-6. PMID: 8180189

Strater99: Strater N, Sun L, Kantrowitz ER, Lipscomb WN (1999). "A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase." Proc Natl Acad Sci U S A 96(20);11151-5. PMID: 10500145


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Mon Feb 8, 2016, biocyc13.