Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
twitter

MetaCyc Compound: glycine

Abbrev Name: gly

Synonyms: G, aminoacetic acid, gly

Superclasses: an acid all carboxy acids a carboxylate an amino acid a neutral amino acid
an acid all carboxy acids a carboxylate an amino acid a non-polar amino acid
an acid all carboxy acids a carboxylate an amino acid a polar amino acid an uncharged polar amino acid
an acid all carboxy acids a carboxylate an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid a neutral amino acid
an amino acid or its derivative an amino acid a non-polar amino acid
an amino acid or its derivative an amino acid a polar amino acid an uncharged polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid

Chemical Formula: C2H5NO2

Molecular Weight: 75.067 Daltons

Monoisotopic Molecular Weight: 75.0320284099 Daltons

glycine compound structure

SMILES: C([N+])C([O-])=O

InChI: InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)

InChIKey: InChIKey=DHMQDGOQFOQNFH-UHFFFAOYSA-N

Unification Links: CAS:56-40-6 , ChEBI:15428 , ChemSpider:730 , DrugBank:DB00145 , HMDB:HMDB00123 , IAF1260:33610 , KEGG:C00037 , KNApSAcK:C00001361 , MetaboLights:MTBLC15428 , PubChem:5257127

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -37.2444 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

2-amino-3-hydroxycyclopent-2-enone biosynthesis , tetrapyrrole biosynthesis II (from glycine) :
glycine + succinyl-CoA + H+ → CO2 + 5-aminolevulinate + coenzyme A

5-aminoimidazole ribonucleotide biosynthesis I , 5-aminoimidazole ribonucleotide biosynthesis II , superpathway of 5-aminoimidazole ribonucleotide biosynthesis :
5-phospho-β-D-ribosylamine + ATP + glycine → ADP + N1-(5-phospho-β-D-ribosyl)glycinamide + phosphate + H+

bacillibactin biosynthesis :
3 2,3-dihydroxybenzoate + 3 glycine + 3 L-threonine + 6 ATP → bacillibactin + 6 AMP + 6 diphosphate + 3 H+ + 3 H2O

bile acid biosynthesis, neutral pathway :
choloyl-CoA + glycine → glycocholate + coenzyme A + H+
chenodeoxycholoyl-CoA + glycine → glycochenodeoxycholate + coenzyme A + H+

bupropion degradation :
3-chlorobenzoate + glycine → m-chlorohippurate + H2O

butanol and isobutanol biosynthesis (engineered) :
glycine + oxygen + H2O → ammonium + hydrogen peroxide + glyoxylate

creatine biosynthesis :
glycine + L-arginine → guanidinoacetate + L-ornithine

ferrichrome A biosynthesis :
3 methylglutaconyl hydroxy ornithine + 3 ATP + glycine + 2 L-serine + Fe3+ → ferrichrome A + 3 AMP + 3 diphosphate + 3 H2O + 3 H+

ferrichrome biosynthesis :
3 N5-acetyl-N5-hydroxy-L-ornithine + 3 glycine + Fe3+ + 3 ATP → ferrichrome + 3 AMP + 3 diphosphate + 3 H2O + 6 H+

glutathione biosynthesis :
glycine + γ-L-glutamyl-L-cysteine + ATP → glutathione + ADP + phosphate + H+

glycine betaine biosynthesis IV (from glycine) , glycine betaine biosynthesis V (from glycine) :
S-adenosyl-L-methionine + glycineS-adenosyl-L-homocysteine + sarcosine + H+

glycolate and glyoxylate degradation III :
(3R)-3-hydroxy-L-aspartate ← glycine + glyoxylate

L-phenylalanine degradation IV (mammalian, via side chain) :
phenylacetyl-CoA + glycine → phenylacetylglycine + coenzyme A + H+

peptidoglycan maturation (meso-diaminopimelate containing) :
a nascent peptidoglycan with (L-alanyl-γ-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanine) tetrapeptide[periplasmic space] + glycine[periplasmic space] → a nascent peptidoglycan with (L-alanyl-γ-D-glutamyl-meso-2,6-diaminopimeloyl-glycine) tetrapeptide[periplasmic space] + D-alanine[periplasmic space]

purine nucleobases degradation I (anaerobic) :
acetyl phosphate + ammonium + an oxidized thioredoxin + H2O ← glycine + a reduced thioredoxin + phosphate + H+

pyruvate fermentation to opines :
strombine + NAD+ + H2O ← pyruvate + glycine + NADH + H+

saframycin A biosynthesis :
glycine + a holo-[SfmB peptidyl-carrier-protein] + H+ → a glycyl-[SfmB peptidyl-carrier-protein] + H2O

thiazole biosynthesis II (Bacillus) :
glycine + oxygen → 2-iminoacetate + hydrogen peroxide + H+

thiazole biosynthesis III (eukaryotes) :
glycine + a [protein]-L-cysteine + NAD+ → 2-carboxylate-4-methyl-5-beta-(ethyl adenosine 5-diphosphate) thiazole + nicotinamide + a [protein]-2-aminoprop-2-enoate + 3 H2O + 2 H+

tRNA charging :
a tRNAgly + glycine + ATP + H+ → a glycyl-[tRNAgly] + AMP + diphosphate

Not in pathways:
benzoyl-CoA + glycine → hippurate + coenzyme A + H+
2 S-adenosyl-L-methionine + glycine → 2 S-adenosyl-L-homocysteine + dimethylglycine + 2 H+
3 S-adenosyl-L-methionine + glycine → 3 S-adenosyl-L-homocysteine + glycine betaine + 3 H+
indole-3-acetate + glycine + ATP → indole-3-acetyl-glycine + AMP + diphosphate + H+

Reactions known to produce the compound:

2-aminoethylphosphonate degradation III :
(2-amino-1-hydroxyethyl)phosphonate + oxygen → glycine + phosphate + 2 H+

4-hydroxy-2-nonenal detoxification :
4-hydroxy-2-nonenal-[Cys-Gly] conjugate + H2O → 4-hydroxy-2-nonenal-[L-Cys] conjugate + glycine

alliin metabolism :
γ-L-glutamyl-(S)-allyl-L-cysteinyl-glycine + H2O → γ-L-glutamyl-(S)-allyl-L-cysteine + glycine

camalexin biosynthesis :
indole-3-acetonitrile-glutatione conjugate + H2O → indole-3-acetonitrile-γ-glutamylcysteine conjugate + glycine

creatinine degradation I :
sarcosine + oxygen + H2O → glycine + formaldehyde + hydrogen peroxide
sarcosine + an oxidized electron-transfer flavoprotein + H2O + H+glycine + formaldehyde + a reduced electron-transfer flavoprotein

creatinine degradation II :
sarcosine + oxygen + H2O → glycine + formaldehyde + hydrogen peroxide
sarcosine + an oxidized electron-transfer flavoprotein + H2O + H+glycine + formaldehyde + a reduced electron-transfer flavoprotein

γ-glutamyl cycle , glutathione degradation (DUG pathway - yeast) :
L-cysteinyl-glycine + H2O → L-cysteine + glycine

gliotoxin biosynthesis :
3-benzyl-3,6 -bis(cysteinylglycine)- 6-(hydroxymethyl)-diketopiperazine + 2 H2O → 3-benzyl-3,6 -bis(cysteinyl)- 6-(hydroxymethyl)-diketopiperazine + 2 glycine

glutathione-mediated detoxification I :
a [Cys-Gly]-S-conjugate + H2O → an L-cysteine-S-conjugate + glycine

glutathione-mediated detoxification II :
a [Cys-Gly]-S-conjugate + H2O → an L-cysteine-S-conjugate + glycine
a glutathione-toxin conjugate + H2O → a [Glu-Cys]-S-conjugate + glycine

glycine betaine degradation I :
sarcosine + oxygen + H2O → glycine + formaldehyde + hydrogen peroxide

glycine betaine degradation II (mammalian) :
sarcosine + 2 an oxidized electron-transfer flavoprotein + a tetrahydrofolate + 3 H+glycine + a 5,10-methenyltetrahydrofolate + 2 a reduced electron-transfer flavoprotein

glycine biosynthesis IV , L-threonine degradation IV :
L-threonine → acetaldehyde + glycine

glycocholate metabolism (bacteria) :
glycocholate + H2O → cholate + glycine

homophytochelatin biosynthesis :
glutathione + homoglutathione → γ-Glu-Cys-γ-Glu-Cys-β-Ala + glycine

indole glucosinolate breakdown (active in intact plant cell) :
indol-3-ylmethylisothiocyanate-glutathione + 2 H2O → 3-aminomethylindole + raphanusamic acid + L-glutamate + glycine
4-methoxy-3-indolylmethylisothiocyanate-glutathione + 2 H2O → 4-methoxy-3-indolylmethylamine + raphanusamic acid + L-glutamate + glycine

L-carnitine biosynthesis :
3-hydroxy-N6,N6,N6-trimethyl-L-lysine → 4-trimethylammoniobutanal + glycine

leukotriene biosynthesis :
leukotriene-D4 + H2O → glycine + leukotriene-E4

methiin metabolism :
S-methylglutathione + H2O → γ-L-glutamyl-(S)-methyl-L-cysteine + glycine

nitrilotriacetate degradation :
iminodiacetate + an oxidized unknown electron acceptor + H2O → glycine + glyoxylate + an reduced unknown electron acceptor

phytochelatins biosynthesis :
[Glu-Cys]n-Gly + glutathione → [Glu-Cys](n+1)-Gly + glycine

Reactions known to both consume and produce the compound:

folate polyglutamylation , glycine betaine degradation I , glycine betaine degradation II (mammalian) , glycine biosynthesis I :
L-serine + a tetrahydrofolate ↔ glycine + a 5,10-methylene-tetrahydrofolate + H2O

folate transformations I :
L-serine + a tetrahydrofolate ↔ glycine + a 5,10-methylene-tetrahydrofolate + H2O
glycine + a tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + ammonium + CO2 + NADH

folate transformations II :
L-serine + a tetrahydrofolate ↔ glycine + a 5,10-methylene-tetrahydrofolate + H2O
glycine + a tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + ammonium + CO2 + NADH

formaldehyde assimilation I (serine pathway) :
glyoxylate + L-serine ↔ hydroxypyruvate + glycine
glyoxylate + L-serine ↔ hydroxypyruvate + glycine
L-serine + a tetrahydrofolate ↔ glycine + a 5,10-methylene-tetrahydrofolate + H2O

glycine biosynthesis II , glycine cleavage :
glycine + a [glycine-cleavage complex H protein] N6-lipoyl-L-lysine + H+ ↔ a [glycine-cleavage complex H protein] N6-aminomethyldihydrolipoyl-L-lysine + CO2

glycine biosynthesis III :
glyoxylate + L-alanine ↔ glycine + pyruvate

L-threonine degradation II :
glycine + acetyl-CoA ↔ 2-amino-3-oxobutanoate + coenzyme A

N10-formyl-tetrahydrofolate biosynthesis :
L-serine + a tetrahydrofolate ↔ glycine + a 5,10-methylene-tetrahydrofolate + H2O
glycine + a tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + ammonium + CO2 + NADH

photorespiration :
glyoxylate + L-serine ↔ hydroxypyruvate + glycine
L-serine + a tetrahydrofolate ↔ glycine + a 5,10-methylene-tetrahydrofolate + H2O
glycine + a tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + ammonium + CO2 + NADH
2-oxoglutarate + glycine ↔ L-glutamate + glyoxylate

purine nucleobases degradation I (anaerobic) :
a 5-formiminotetrahydrofolate + glycineN-formimino-glycine + a tetrahydrofolate

purine nucleobases degradation II (anaerobic) :
L-serine + a tetrahydrofolate ↔ glycine + a 5,10-methylene-tetrahydrofolate + H2O
a 5-formiminotetrahydrofolate + glycineN-formimino-glycine + a tetrahydrofolate

Not in pathways:
glyoxylate + L-methionine ↔ glycine + 2-oxo-4-methylthiobutanoate
L-kynurenine + glyoxylate ↔ glycine + 4-(2-aminophenyl)-2,4-dioxobutanoate
L-asparagine + glyoxylate ↔ 2-oxosuccinamate + glycine
4-hydroxy-L-threonine ↔ glycolaldehyde + glycine
glyoxylate + an aromatic amino acid ↔ glycine + an aromatic oxo-acid

In Reactions of unknown directionality:

homophytochelatin biosynthesis :
[Glu(-Cys)]n-β-Ala + glutathione = [Glu(-Cys)](n+1)-β-Ala + glycine

Not in pathways:
L-threo-3-phenylserine = benzaldehyde + glycine
(3S)-3-hydroxy-D-aspartate = glycine + glyoxylate
guanidinoacetate + H2O = urea + glycine
N-Benzyloxycarbonylglycine + H+ + H2O = glycine + CO2 + benzyl alcohol
N-feruloylglycine + H2O = ferulate + glycine
D-threonine = glycine + acetaldehyde
D-allothreonine = glycine + acetaldehyde
S-ureidoglycine + glyoxylate = oxalurate + glycine
(3R)-3-hydroxy-D-aspartate = glycine + glyoxylate
glycine + 2 an oxidized c-type cytochrome + H2O = glyoxylate + ammonium + 2 a reduced c-type cytochrome + 2 H+
a fatty acid + L-alanine + glycine + a holo-[SfmB peptidyl-carrier-protein] + H+ = an acyl-L-alanyl-glycyl-[SfmB peptidyl-carrier-protein] + 3 H2O
a uridine34 in tRNA + GTP + a 5,10-methylene-tetrahydrofolate + glycine + H2O = a 5-carboxymethylaminomethyluridine in tRNA + GDP + a 7,8-dihydrofolate + phosphate
a 2-thiouridine34 in tRNA + GTP + glycine + a 5,10-methylene-tetrahydrofolate + H2O = a 5-carboxymethylaminomethyl-2-thiouridine in tRNA + GDP + a 7,8-dihydrofolate + phosphate
(E)-cinnamoyl-CoA + glycine = cinnamoylglycine + coenzyme A + H+
3-phenylpropanoyl-CoA + glycine = N-(3-phenylpropanoyl)glycine + coenzyme A + H+
glycine + NAD+ + H2O = ammonium + glyoxylate + NADH + H+
glycine + ATP = glycyl-AMP + diphosphate
glycine + 2 acceptors = hydrogen cyanide + CO2 + 2 reduced acceptors
5,10-methylene-tetrahydromethanopterin + glycine + H2O = tetrahydromethanopterin + L-serine
an acyl-CoA + glycine = an N-acylglycine + coenzyme A

Not in pathways:
L-arginine + a standard α amino acid + ATP = a dipeptide with N-terminal L-arginine + ADP + phosphate + H+

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

Not in pathways:
eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a 2-acyl 1-lyso-phosphatidylcholine[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]

In Transport reactions:
2 glycine[out] + 2 H+[out] ↔ 2 glycine[in] + 2 H+[in] ,
glycine[periplasmic space] + H+[periplasmic space]glycine[cytosol] + H+[cytosol] ,
glycine[periplasmic space]glycine[cytosol] ,
a non-polar amino acid[extracellular space] + ATP + H2O ↔ a non-polar amino acid[cytosol] + ADP + phosphate ,
a polar amino acid[extracellular space] + ATP + H2O ↔ a polar amino acid[cytosol] + ADP + phosphate

Enzymes activated by glycine, sorted by the type of activation, are:

Activator (Allosteric) of: phosphoenolpyruvate carboxylase

Activator (Mechanism unknown) of: glutamate dehydrogenase (NAD-dependent) [Bonete96]

Enzymes inhibited by glycine, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: serine acetyltransferase [Hindson03]

Inhibitor (Allosteric) of: (R)-2-hydroxyglutarate reductase [Zhao96] , D-3-phosphoglycerate dehydrogenase [Zhao96, Dubrow77, Sugimoto68a] , (S)-2-hydroxyglutarate reductase [Zhao96]

Inhibitor (Mechanism unknown) of: glutamine synthetase [Woolfolk67, Comment 1] , formyltetrahydrofolate deformylase [Nagy95]

This compound has been characterized as an alternative substrate of the following enzymes: UDP-N-acetylmuramate--L-alanine ligase , tauropine synthase , alanopine synthase , D-octopine synthase , UDP-N-acetylmuramate-alanine ligase , D-alanine-D-alanine ligase A , alanopine synthase , D-alanine-D-alanine ligase B


References

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Dubrow77: Dubrow R, Pizer LI (1977). "Transient kinetic studies on the allosteric transition of phosphoglycerate dehydrogenase." J Biol Chem 1977;252(5);1527-38. PMID: 320209

Hindson03: Hindson VJ, Shaw WV (2003). "Random-order ternary complex reaction mechanism of serine acetyltransferase from Escherichia coli." Biochemistry 42(10);3113-9. PMID: 12627979

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Nagy95: Nagy PL, Marolewski A, Benkovic SJ, Zalkin H (1995). "Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli." J Bacteriol 1995;177(5);1292-8. PMID: 7868604

Sugimoto68a: Sugimoto E, Pizer LI (1968). "The mechanism of end product inhibition of serine biosynthesis. II. Optical studies of phosphoglycerate dehydrogenase." J Biol Chem 1968;243(9);2090-8. PMID: 4296829

Woolfolk67: Woolfolk CA, Stadtman ER (1967). "Regulation of glutamine synthetase. 3. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli." Arch Biochem Biophys 118(3);736-55. PMID: 4860415

Zhao96: Zhao G, Winkler ME (1996). "A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria." J Bacteriol 1996;178(1);232-9. PMID: 8550422


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Sat Aug 29, 2015, biocyc13.