Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
twitter

MetaCyc Compound: L-glutamate

Abbrev Name: glt

Synonyms: 1-amino-propane-1,3-dicarboxylic acid, glutacid, glutaminic acid, L-glutamic acid, α-aminoglutaric acid, E, glt, glu, glut, L-glu, 2-aminopentanedioic acid

Superclasses: an acid all carboxy acids a carboxylate an amino acid a glutamate
an acid all carboxy acids a carboxylate an amino acid a polar amino acid a negatively-charged polar amino acid
an acid all carboxy acids a carboxylate an amino acid an alpha amino acid a standard alpha amino acid
an acid all carboxy acids a carboxylate an amino acid an L-amino acid
an amino acid or its derivative an amino acid a glutamate
an amino acid or its derivative an amino acid a polar amino acid a negatively-charged polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an L-amino acid

Chemical Formula: C5H8NO4

Molecular Weight: 146.12 Daltons

Monoisotopic Molecular Weight: 147.0531577825 Daltons

L-glutamate compound structure

pKa 1: 2.19

pKa 2: 4.25

pKa 3: 9.67

SMILES: C(CCC(C(=O)[O-])[N+])([O-])=O

InChI: InChI=1S/C5H9NO4/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H,7,8)(H,9,10)/p-1/t3-/m0/s1

InChIKey: InChIKey=WHUUTDBJXJRKMK-VKHMYHEASA-M

Unification Links: CAS:56-86-0 , ChEBI:29985 , ChemSpider:4573882 , HMDB:HMDB00148 , IAF1260:33561 , KEGG:C00025 , KNApSAcK:C00001358 , MetaboLights:MTBLC29985 , PubChem:5460299

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -82.27311 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

ammonia assimilation cycle I , ammonia assimilation cycle II , L-glutamine biosynthesis I , L-glutamine biosynthesis III , nitrate reduction II (assimilatory) , nitrate reduction V (assimilatory) , nitrate reduction VI (assimilatory) :
ammonium + L-glutamate + ATP → L-glutamine + ADP + phosphate + H+

aniline degradation :
ATP + L-glutamate + aniline → ADP + N5-phenyl-L-glutamine + phosphate

bactoprenyl-diphospho-acetamido-4-amino-6-deoxygalactopyranose biosynthesis :
UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex4-ulose + L-glutamate → UDP-acetamido-4-amino-6-deoxygalactopyranose + 2-oxoglutarate

butirosin biosynthesis :
a 4-amino butanoyl-[BtrI acyl-carrier protein] + L-glutamate + ATP → a 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein] + ADP + phosphate + H+
a BtrI acyl-carrier protein + L-glutamate + ATP → an L-glutamyl-[BtrI acyl-carrier protein] + ADP + phosphate

ergothioneine biosynthesis I (bacteria) , glutathione biosynthesis , homoglutathione biosynthesis :
L-glutamate + L-cysteine + ATP → γ-L-glutamyl-L-cysteine + ADP + phosphate + H+

factor 420 polyglutamylation :
oxidized coenzyme F420-0 + L-glutamate + GTP → oxidized coenzyme F420-1 + GDP + phosphate + H+
oxidized coenzyme F420-1 + L-glutamate + GTP → oxidized coenzyme F420-2 + GDP + phosphate + H+

folate polyglutamylation :
tetrahydropteroyl-[γ-Glu](n) + L-glutamate + ATP → tetrahydropteroyl-[γ-Glu](n+1) + ADP + phosphate
10-formyl-tetrahydropteroyl-[γ-Glu](n) + L-glutamate + ATP → 10-formyl-tetrahydropteroyl-[γ-Glu](n+1) + ADP + phosphate
methylene-tetrahydropteroyl-[γ-Glu](n) + L-glutamate + ATP → methylene-tetrahydropteroyl-[γ-Glu](n+1) + ADP + phosphate

GABA shunt , glutamate dependent acid resistance , L-glutamate degradation IV , L-glutamate degradation IX (via 4-aminobutanoate) :
L-glutamate + H+ → CO2 + 4-aminobutanoate

GDP-L-colitose biosynthesis :
GDP-4-dehydro-6-deoxy-α-D-mannose + L-glutamate → GDP-(2S,3S,6R)-3-hydroxy-5-amino-6-methyl-3,6-dihydro-2H-pyran + 2-oxoglutarate + H2O + H+

gentamicin biosynthesis :
gentamicin A2 + S-adenosyl-L-methionine + L-glutamate + oxygen → gentamicin A + S-adenosyl-L-homocysteine + hydrogen peroxide + 2-oxoglutarate + H+
G-418 + L-glutamate + oxygen → JI-20B + hydrogen peroxide + 2-oxoglutarate
gentamicin X2 + L-glutamate + oxygen → JI-20A + hydrogen peroxide + 2-oxoglutarate

glutaminyl-tRNAgln biosynthesis via transamidation :
tRNAgln + L-glutamate + ATP + H+ → an L-glutamyl-[tRNAGln] + AMP + diphosphate

hopanoid biosynthesis (bacteria) :
formyl hopane + L-glutamate → aminobacteriohopanetriol + 2-oxoglutarate

indole-3-acetate conjugate biosynthesis II , indole-3-acetyl-amide conjugate biosynthesis :
indole-3-acetate + L-glutamate + ATP → indole-3-acetyl-glutamate + AMP + diphosphate + H+

isopropylamine degradation :
isopropylamine + L-glutamate + ATP → γ-glutamyl-isopropylamide + ADP + phosphate + H+

L-arginine biosynthesis II (acetyl cycle) :
L-glutamate + N-acetyl-L-ornithine → N-acetyl-L-glutamate + L-ornithine

L-arginine biosynthesis IV (archaebacteria) :
L-glutamate + a [LysW protein]-L-glutamate + ATP → an [L-2-aminoadipate carrier protein]-L-glutamate + ADP + phosphate + H+

L-citrulline biosynthesis , L-ornithine de novo biosynthesis , L-proline biosynthesis I :
L-glutamate + ATP → γ-L-glutamyl 5-phosphate + ADP

L-histidine biosynthesis :
imidazole acetol-phosphate + L-glutamate → L-histidinol-phosphate + 2-oxoglutarate

L-lysine biosynthesis II :
L-2-acetamido-6-oxoheptanedioate + L-glutamateN-acetyl-L,L-2,6-diaminopimelate + 2-oxoglutarate

Reactions known to produce the compound:

4-hydroxy-2-nonenal detoxification :
4-hydroxy-2-nonenal-glutathione conjugate + H2O → 4-hydroxy-2-nonenal-[Cys-Gly] conjugate + L-glutamate

5-aminoimidazole ribonucleotide biosynthesis I , 5-aminoimidazole ribonucleotide biosynthesis II , superpathway of 5-aminoimidazole ribonucleotide biosynthesis :
ATP + N2-formyl-N1-(5-phospho-β-D-ribosyl)glycinamide + L-glutamine + H2O → L-glutamate + ADP + 2-(formamido)-N1-(5-phospho-β-D-ribosyl)acetamidine + phosphate + H+

adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I , adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II :
adenosyl-cobyrinate a,c-diamide + 4 L-glutamine + 4 ATP + 4 H2O → 4 L-glutamate + adenosylcobyrate + 4 ADP + 4 phosphate + 4 H+

alliin metabolism :
γ-L-glutamyl-(S)-allyl-L-cysteine + H2O → S-allyl-L-cysteine + L-glutamate

ammonia assimilation cycle I , L-glutamate biosynthesis IV :
2 L-glutamate + NAD+ ← L-glutamine + 2-oxoglutarate + NADH + H+

ammonia assimilation cycle II , L-glutamate biosynthesis V , L-glutamine biosynthesis III :
2 L-glutamate + 2 an oxidized ferredoxin ← 2-oxoglutarate + L-glutamine + 2 a reduced ferredoxin + 2 H+

aniline degradation :
N5-phenyl-L-glutamine + H2O → L-glutamate + aniline + H+
γ-glutamylanilide diol + H2O → 1-aminocyclohexa-3,5-diene-1,2-diol + L-glutamate

camalexin biosynthesis :
indole-3-acetonitrile-γ-glutamylcysteine conjugate + H2O → indole-3-acetonitrile-cysteine conjugate + L-glutamate

cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) :
cobyrinate + 2 L-glutamine + 2 ATP + 2 H2O → cob(II)yrinate a,c-diamide + 2 L-glutamate + 2 ADP + 2 phosphate + 2 H+

cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) :
hydrogenobyrinate + 2 L-glutamine + 2 ATP + 2 H2O → 2 L-glutamate + hydrogenobyrinate a,c-diamide + 2 ADP + 2 phosphate + 2 H+

ergothioneine biosynthesis I (bacteria) :
S-(hercyn-2-yl)-γ-L-glutamyl-L-cysteine S-oxide + H2O → S-(hercyn-2-yl)-L-cysteine S-oxide + L-glutamate

ethylene biosynthesis II (microbes) , L-arginine degradation I (arginase pathway) , L-proline degradation :
L-glutamate-5-semialdehyde + NAD+ + H2O → L-glutamate + NADH + 2 H+

γ-glutamyl cycle :
5-oxo-L-proline + ATP + 2 H2O → L-glutamate + ADP + phosphate + H+

glucosinolate biosynthesis from dihomomethionine :
5-methylthiopentylhydroximoyl-glutathione + H2O → 5-methylthiopentylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from hexahomomethionine :
9-methylthiononylhydroximoyl-glutathione + H2O → 9-methylthiononylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from homomethionine :
4-methylthiobutylhydroximoyl-glutathione + H2O → 4-methylthiobutylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from pentahomomethionine :
8-methylthiooctylhydroximoyl-glutathione + H2O → 8-methylthiooctylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from phenylalanine :
phenylacetohydroximoyl-glutathione + H2O → phenylacetohydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from tetrahomomethionine :
7-methylthioheptylhydroximoyl-glutathione + H2O → 7-methylthioheptylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from trihomomethionine :
6-methylthiohexylhydroximoyl-glutathione + H2O → 6-methylthiohexylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from tryptophan :
indole-3-acetohydroximoyl-glutathione + H2O → indole-3-acetohydroximoyl-cysteinylglycine + L-glutamate

glutamate removal from folates :
tetrahydropteroyl-[γ-Glu](n) + H2O → tetrahydropteroyl-[γ-Glu](n-1) + L-glutamate

glutaminyl-tRNAgln biosynthesis via transamidation :
L-glutamine + an L-glutamyl-[tRNAGln] + ATP + H2O → L-glutamate + an L-glutaminyl-[tRNAgln] + ADP + phosphate + H+

glutathione degradation (DUG pathway - yeast) :
glutathione + H2O → L-cysteinyl-glycine + L-glutamate

Reactions known to both consume and produce the compound:

(R)-cysteate degradation , coenzyme M biosynthesis II , sulfolactate degradation III :
L-cysteate + 2-oxoglutarate ↔ 3-sulfopyruvate + L-glutamate

(S)-reticuline biosynthesis I , 4-hydroxybenzoate biosynthesis I (eukaryotes) , 4-hydroxyphenylpyruvate biosynthesis , atromentin biosynthesis , L-tyrosine biosynthesis I , L-tyrosine degradation I , L-tyrosine degradation II , L-tyrosine degradation III , L-tyrosine degradation IV (to 4-methylphenol) , rosmarinic acid biosynthesis I :
L-tyrosine + 2-oxoglutarate ↔ 4-hydroxyphenylpyruvate + L-glutamate

(S)-reticuline biosynthesis II , rosmarinic acid biosynthesis II :
L-dopa + 2-oxoglutarate ↔ 3,4-dihydroxyphenylpyruvate + L-glutamate

2'-deoxymugineic acid phytosiderophore biosynthesis :
L-nicotianamine + 2-oxoglutarate ↔ L-glutamate + 3''-deamino-3''-oxonicotianamine

2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis , 4-hydroxy-2(1H)-quinolone biosynthesis , acridone alkaloid biosynthesis , L-tryptophan biosynthesis :
chorismate + L-glutamine ↔ anthranilate + L-glutamate + pyruvate + H+

3-methylarginine biosynthesis , L-arginine degradation XI :
L-arginine + 2-oxoglutarate ↔ L-glutamate + 5-guanidino-2-oxo-pentanoate

4-amino-2-methyl-5-phosphomethylpyrimidine biosynthesis (yeast) , 5-aminoimidazole ribonucleotide biosynthesis I , 5-aminoimidazole ribonucleotide biosynthesis II , superpathway of 5-aminoimidazole ribonucleotide biosynthesis :
5-phospho-β-D-ribosylamine + L-glutamate + diphosphate ↔ 5-phospho-α-D-ribose 1-diphosphate + L-glutamine + H2O

4-aminobenzoate biosynthesis :
chorismate + L-glutamine ↔ 4-amino-4-deoxychorismate + L-glutamate

4-aminobutanoate degradation I , 4-aminobutanoate degradation II , 4-aminobutanoate degradation III , L-glutamate degradation IV , nicotine degradation I (pyridine pathway) :
4-aminobutanoate + 2-oxoglutarate ↔ succinate semialdehyde + L-glutamate

4-aminobutanoate degradation V :
4-aminobutanoate + 2-oxoglutarate ↔ succinate semialdehyde + L-glutamate
L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+

anaerobic energy metabolism (invertebrates, cytosol) :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate

archaeosine biosynthesis :
preQ0 at position 15 of an archaeal tRNA + L-glutamine + H2O ↔ archaeosine at position 15 of an archaeal tRNA + L-glutamate

β-alanine degradation I :
β-alanine + 2-oxoglutarate ↔ 3-oxopropanoate + L-glutamate

C4 photosynthetic carbon assimilation cycle, NAD-ME type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

C4 photosynthetic carbon assimilation cycle, PEPCK type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

CMP-8-amino-3,8-dideoxy-D-manno-octulosonate biosynthesis :
(4R,5R,6S,7S)-4,5,6,7-tetrahydroxy-2,8-dioxooctanoate + L-glutamate ↔ 8-amino-3,8-dideoxy-D-manno-octulosonate + 2-oxoglutarate

CMP-legionaminate biosynthesis I :
β-D-fructofuranose 6-phosphate + L-glutamine ↔ D-glucosamine 6-phosphate + L-glutamate

In Reactions of unknown directionality:

Not in pathways:
γ-glutamyl-ethylamide + H2O = L-glutamate + ethylamine
L-serine + 2-oxoglutarate = L-glutamate + hydroxypyruvate
cob(II)yrinate c-monoamide + L-glutamine + ATP + H2O = cob(II)yrinate a,c-diamide + L-glutamate + ADP + phosphate + H+
(S)-1-pyrroline-5-carboxylate + NAD(P)+ + 2 H2O = L-glutamate + NAD(P)H + H+
cobyrinate + L-glutamine + ATP + H2O = cob(II)yrinate c-monoamide + L-glutamate + ADP + phosphate + H+
an N-long-chain-fatty-acyl-L-glutamate + H2O = L-glutamate + a long-chain fatty acid
L-glutamate + 2 an oxidized ferredoxin + H2O = ammonium + 2-oxoglutarate + 2 a reduced ferredoxin + 2 H+
methylamine + L-glutamate = N-methyl-L-glutamate + ammonium
poly (D-glutamate)n + L-glutamate + ATP = poly (D-glutamate)(n+1) + ADP + phosphate
an N5-formyl-tetrahydrofolate + L-glutamate + ATP = 5-formyl-THF-Glun+1 + ADP + phosphate
L-glutamate + ATP = α-L-glutamyl phosphate + ADP

Not in pathways:
L-arginine + a standard α amino acid + ATP = a dipeptide with N-terminal L-arginine + ADP + phosphate + H+

Not in pathways:
an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

Not in pathways:
eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a 2-acyl 1-lyso-phosphatidylcholine[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an aldehyde + an electron-transfer quinone + H2O = a carboxylate + an electron-transfer quinol + H+
a triacyl-sn-glycerol + H2O = a 1,2-diacyl-sn-glycerol + a carboxylate + H+
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium

In Transport reactions:
L-glutamate[cytosol] + L-cystine[extracellular space] → L-cystine[cytosol] + L-glutamate[extracellular space] ,
L-glutamate[cytosol]L-glutamate[mitochondrial lumen] ,
L-glutamate[chloroplast stroma]L-glutamate[cytosol] ,
2 L-glutamate[out] + 2 H+[out] ↔ 2 L-glutamate[in] + 2 H+[in] ,
4-aminobutanoate[cytosol] + L-glutamate[periplasmic space]L-glutamate[cytosol] + 4-aminobutanoate[periplasmic space] ,
2 Na+[periplasmic space] + L-glutamate[periplasmic space] → 2 Na+[cytosol] + L-glutamate[cytosol] ,
L-glutamate[periplasmic space] + 2 H+[periplasmic space]L-glutamate[cytosol] + 2 H+[cytosol] ,
ATP + L-glutamate[periplasmic space] + H2O → ADP + L-glutamate[cytosol] + phosphate + H+ ,
a polar amino acid[extracellular space] + ATP + H2O ↔ a polar amino acid[cytosol] + ADP + phosphate

Enzymes activated by L-glutamate, sorted by the type of activation, are:

Activator (Allosteric) of: glutaminase B [Prusiner76a, Prusiner76]

Activator (Mechanism unknown) of: malate dehydrogenase [Bologna07]

Enzymes inhibited by L-glutamate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: diaminopimelate decarboxylase [White65] , L-glutamine:D-fructose-6-phosphate aminotransferase [Badet88, Isupov96, Comment 1] , glutaminase [Hartman68] , glutaminase B [Prusiner76a, Comment 2] , L-glutamate γ-semialdehyde dehydrogenase [ForteMcRobbie89] , tyrosine/phenylalanine aminotransferase [Comment 3] , glutamate synthase (NADH-dependent) [Boland77]

Inhibitor (Noncompetitive) of: glutamate dehydrogenase (NAD-dependent) [Bonete89, Comment 4] , formiminoglutamate formiminohydrolase [Kaminskas70] , glutamate dehydrogenase (NADP-dependent) [Bonete90, Comment 5]

Inhibitor (Allosteric) of: pyruvate kinase [Smith00] , pyruvate kinase [Turner00]

Inhibitor (Mechanism unknown) of: 4-hydroxyglutamate transaminase [MAITRA64] , S-methyl-L-methionine decarboxylase [Kocsis00] , citrate lyase deacetylase [Giffhorn80] , L-lysine-α-ketoglutarate reductase [Hutzler75]

This compound has been characterized as an alternative substrate of the following enzymes: phosphinothricin N-acetyltransferase , aspartate aminotransferase , L-alanine:D-1-guanidino-1-deoxy-3-dehydro-scyllo-inositol transaminase , valine-pyruvate aminotransferase , carbapenam synthetase , methionine-oxo-acid transaminase , 3,4-dihydroxyphenylalanine oxidative deaminase , aspartate aminotransferase , 4-hydroxyglutamate transaminase , dihydroxyacetone phosphate transaminase


References

Badet88: Badet B, Vermoote P, Le Goffic F (1988). "Glucosamine synthetase from Escherichia coli: kinetic mechanism and inhibition by N3-fumaroyl-L-2,3-diaminopropionic derivatives." Biochemistry 1988;27(7);2282-7. PMID: 3132968

Boland77: Boland MJ, Benny AG (1977). "Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules." Eur J Biochem 79(2);355-62. PMID: 21790

Bologna07: Bologna FP, Andreo CS, Drincovich MF (2007). "Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure." J Bacteriol 189(16);5937-46. PMID: 17557829

Bonete89: Bonete MJ, Camacho ML, Cadenas E (1989). "Kinetic mechanism of Halobacterium halobium NAD+-glutamate dehydrogenase." Biochim Biophys Acta 1989;990(2);150-5. PMID: 2917175

Bonete90: Bonete MJ, Camacho ML, Cadenas E (1990). "Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase." Biochim Biophys Acta 1990;1041(3);305-10. PMID: 1980084

ForteMcRobbie89: Forte-McRobbie C, Pietruszko R (1989). "Human glutamic-gamma-semialdehyde dehydrogenase. Kinetic mechanism." Biochem J 261(3);935-43. PMID: 2803253

Giffhorn80: Giffhorn F, Rode H, Kuhn A, Gottschalk G (1980). "Citrate lyase deacetylase of Rhodopseudomonas gelatinosa. Isolation of the enzyme and studies on the inhibition by L-glutamate." Eur J Biochem 111(2);461-71. PMID: 7460909

Hartman68: Hartman SC (1968). "Glutaminase of Escherichia coli. I. Purification and general catalytic properties." J Biol Chem 1968;243(5);853-63. PMID: 4966660

Hutzler75: Hutzler J, Dancis J (1975). "Lysine-ketoglutarate reductase in human tissues." Biochim Biophys Acta 377(1);42-51. PMID: 235294

Isupov96: Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA, Teplyakov A (1996). "Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase." Structure 4(7);801-10. PMID: 8805567

Kaminskas70: Kaminskas E, Kimhi Y, Magasanik B (1970). "Urocanase and N-formimino-L-glutamate formiminohydrolase of Bacillus subtilis, two enzymes of the histidine degradation pathway." J Biol Chem 1970;245(14);3536-44. PMID: 4990470

Kocsis00: Kocsis MG, Hanson AD (2000). "Biochemical evidence for two novel enzymes in the biosynthesis of 3-dimethylsulfoniopropionate in Spartina alterniflora." Plant Physiol 123(3);1153-61. PMID: 10889264

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

MAITRA64: MAITRA U, DEEKKER E (1964). "PURIFICATION OF RAT-LIVER GAMMA-HYDROXYGLUTAMATE TRANSAMINASE AND ITS PROBABLE IDENTITY WITH GLUTAMATE-ASPARTATE TRANSAMINASE." Biochim Biophys Acta 81;517-32. PMID: 14170323

Prusiner76: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Prusiner76a: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. II. Modulaltion of activity by carbosylate and borate ions." J Biol Chem 1976;251(11);3457-62. PMID: 776969

Smith00: Smith CR, Knowles VL, Plaxton WC (2000). "Purification and characterization of cytosolic pyruvate kinase from Brassica napus (rapeseed) suspension cell cultures: implications for the integration of glycolysis with nitrogen assimilation." Eur J Biochem 267(14);4477-85. PMID: 10880971

Turner00: Turner WL, Plaxton WC (2000). "Purification and characterization of cytosolic pyruvate kinase from banana fruit." Biochem J 352 Pt 3;875-82. PMID: 11104698

Weigent76: Weigent DA, Nester EW (1976). "Purification and properties of two aromatic aminotransferases in Bacillus subtilis." J Biol Chem 1976;251(22);6974-80. PMID: 11213

White65: White PJ, Kelly B (1965). "Purification and properties of diaminopimelate decarboxylase from Escherichia coli." Biochem J 96;75-84. PMID: 14343156


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Fri Sep 4, 2015, BIOCYC14A.