Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: demethylmenaquinone-6

Abbrev Name: DMK-6

Synonyms: DMK-6

Superclasses: a redox electron carrier Membrane-Electron-Carriers an electron-transfer-related quinone a demethylmenaquinone
an aldehyde or ketone a ketone a cyclic ketone a quinone an electron-transfer-related quinone a demethylmenaquinone

Summary:
Menaquinones and demethylmenaquinones are isoprenoid quinones of the naphthalene series, and are constituents of bacterial plasma membranes, where they play important roles in electron transfer and oxidative phosphorylation. Menaquinones and demethylmenaquinones are named MK-n or DMK-n, respectively, where the n refers to the number of prenyl units present in the side chain [Collins81].

Chemical Formula: C40H54O2

Molecular Weight: 566.86 Daltons

Monoisotopic Molecular Weight: 566.4123809776 Daltons

SMILES: CC(=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCC1(=CC(=O)C2(C=CC=CC(C(=O)1)=2)))C

InChI: InChI=1S/C40H54O2/c1-30(2)15-10-16-31(3)17-11-18-32(4)19-12-20-33(5)21-13-22-34(6)23-14-24-35(7)27-28-36-29-39(41)37-25-8-9-26-38(37)40(36)42/h8-9,15,17,19,21,23,25-27,29H,10-14,16,18,20,22,24,28H2,1-7H3/b31-17+,32-19+,33-21+,34-23+,35-27+

InChIKey: InChIKey=PZQIKROWSQGHQV-ROTSUDQPSA-N

Unification Links: PubChem:25245576

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 696.3305 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

Not in pathways:
S-adenosyl-L-methionine + a demethylmenaquinoneS-adenosyl-L-homocysteine + a menaquinone

(5R)-carbapenem carboxylate biosynthesis , citrulline biosynthesis , L-Nδ-acetylornithine biosynthesis , proline degradation :
L-proline + an electron-transfer-related quinone[inner membrane] → (S)-1-pyrroline-5-carboxylate + an electron-transfer-related quinol[inner membrane] + H+

4-hydroxymandelate degradation :
(S)-4-hydroxymandelate + an electron-transfer-related quinone → 2-(4-hydroxyphenyl)-2-oxoacetate + an electron-transfer-related quinol

alanine degradation I :
D-alanine + an electron-transfer-related quinone[inner membrane] + H2O → ammonium + pyruvate + an electron-transfer-related quinol[inner membrane]

sulfide oxidation I (sulfide-quinone reductase) :
hydrogen sulfide + an electron-transfer-related quinone → intracellular S0 + an electron-transfer-related quinol

TCA cycle IV (2-oxoglutarate decarboxylase) , TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) , TCA cycle VII (acetate-producers) :
succinate[in] + an electron-transfer-related quinone[CCO-OUT-CCO-IN] → fumarate[in] + an electron-transfer-related quinol[CCO-OUT-CCO-IN]

trans-4-hydroxy-L-proline degradation I :
trans-4-hydroxy-L-proline[in] + an electron-transfer-related quinone → pyrroline-hydroxy-carboxylate[in] + an electron-transfer-related quinol + H+[in]

trans-lycopene biosynthesis II (plants) :
7,9,9'-cis-neurosporene + an electron-transfer-related quinone → prolycopene + an electron-transfer-related quinol
9,9'-di-cis-ζ-carotene + an electron-transfer-related quinone → 7,9,9'-cis-neurosporene + an electron-transfer-related quinol


(S)-dihydroorotate + an electron-transfer-related quinone[inner membrane] → orotate + an electron-transfer-related quinol[inner membrane]
NADPH + an electron-transfer-related quinone + H+ → NADP+ + an electron-transfer-related quinol
a D-amino acid[in] + an electron-transfer-related quinone[CCO-OUT-CCO-IN] + H2O[in] → a 2-oxo carboxylate[in] + ammonium[in] + an electron-transfer-related quinol[CCO-OUT-CCO-IN]
D-glucopyranose[out] + an electron-transfer-related quinone + 2 H+[in] → D-glucono-1,5-lactone[out] + an electron-transfer-related quinol + 2 H+[out]
sn-glycerol 3-phosphate[in] + an electron-transfer-related quinone[CCO-OUT-CCO-IN] → dihydroxyacetone phosphate[in] + an electron-transfer-related quinol[CCO-OUT-CCO-IN]

quinate degradation I :
L-quinate + a quinone → 3-dehydroquinate + a quinol

shikimate degradation I :
shikimate + a quinone → 3-dehydroshikimate + a quinol

TCA cycle I (prokaryotic) , TCA cycle VII (acetate-producers) :
(S)-malate + a quinone → oxaloacetate + a quinol

thiosulfate oxidation II (to tetrathionate) :
2 thiosulfate + a quinone → tetrathionate + a quinol


a quinone + NAD(P)H + H+ → a quinol + NAD(P)+
a cyclic alcohol + a quinonea cyclic ketone + a quinol


a cyclic alcohol + a quinonea cyclic ketone + a quinol

Reactions known to produce the compound:

methane oxidation to methanol II :
methane + an electron-transfer-related quinol + oxygen → methanol + an electron-transfer-related quinone + H2O

TCA cycle VI (obligate autotrophs) :
succinate[in] + an electron-transfer-related quinone[CCO-OUT-CCO-IN] ← fumarate[in] + an electron-transfer-related quinol[CCO-OUT-CCO-IN]

Not in pathways:
2 an oxidized c-type cytochrome[out] + an electron-transfer-related quinol → 2 a reduced c-type cytochrome[out] + an electron-transfer-related quinone + 2 H+[in]

cuticular wax biosynthesis :
a secondary alcohol + an oxidized electron acceptor → a ketone + a reduced electron acceptor


a secondary alcohol + oxygen → a ketone + hydrogen peroxide


a nitroalkane + oxygen + H2O → an aldehyde or ketone + nitrite + hydrogen peroxide + H+

Reactions known to both consume and produce the compound:

nitrate reduction I (denitrification) , nitrate reduction VII (denitrification) :
nitrate[in] + an electron-transfer-related quinol ↔ nitrite[in] + an electron-transfer-related quinone + H2O[in]

Not in pathways:
a quinone + NADPH ↔ a semiquinone + NADP+

In Reactions of unknown directionality:

Not in pathways:
demethylmenaquinol-6 + an oxidized electron acceptor = demethylmenaquinone-6 + a reduced electron acceptor


9,9'-di-cis-ζ-carotene + 2 an electron-transfer-related quinone = prolycopene + 2 an electron-transfer-related quinol
formate + an electron-transfer-related quinone + H+ = CO2 + an electron-transfer-related quinol
NADH + an electron-transfer-related quinone + H+ = NAD+ + an electron-transfer-related quinol
an (R)-2-hydroxyacid + an electron-transfer-related quinone = a 2-oxo acid + an electron-transfer-related quinol
an oxidized coenzyme F420 + an electron-transfer-related quinol = a reduced coenzyme F420 + an electron-transfer-related quinone


phenylacetyl-CoA + 2 a quinone + H2O = 2 a quinol + phenylglyoxylyl-CoA
a quinone + NADH = a semiquinone + NAD+
1-(β-D-ribofuranosyl)-1,4-dihydronicotinamide + a quinone + H+ = a quinol + 1-(β-D ribofuranosyl)nicotinamide


a ketone + NADP+ = an enone + NADPH + H+
a secondary alcohol + an oxidized coenzyme F420 = a ketone + a reduced coenzyme F420
a secondary alcohol + NADP+ = a ketone + NADPH + H+
a secondary alcohol + NAD+ = a ketone + NADH + H+

In Redox half-reactions:
an electron-transfer-related quinone + 2 H+[in] + 2 e- → an electron-transfer-related quinol

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: putrescine oxidase


References

Collins81: Collins MD, Jones D (1981). "Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication." Microbiol Rev 45(2);316-54. PMID: 7022156

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Mon Nov 24, 2014, BIOCYC14A.