Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: α-terpinyl cation

Superclasses: a lipid an isoprenoid a terpenoid a terpenoid derivative a monoterpenoid derivative a monoterpenol
a secondary metabolite a terpenoid a terpenoid derivative a monoterpenoid derivative a monoterpenol
an alcohol a monoterpenol

Citations: [Schilmiller09]

Chemical Formula: C10H19

Molecular Weight: 139.26 Daltons

Monoisotopic Molecular Weight: 138.1408505778 Daltons

SMILES: C[C+](C)C1(CC=C(C)CC1)

InChI: InChI=1S/C10H17/c1-8(2)10-6-4-9(3)5-7-10/h4,10H,5-7H2,1-3H3/q+1/t10-/m1/s1

InChIKey: InChIKey=YLURGPAULPYZSN-SNVBAGLBSA-N

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 210.40924 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

linoleate biosynthesis I (plants) :
oleoyl-CoA + a lipid + H+ → a lipid oleoyl-group + coenzyme A

Reactions known to produce the compound:

Not in pathways:
a monoterpenyl diphosphate + H2O → a monoterpenol + diphosphate + H+

β-D-glucuronide and D-glucuronate degradation :
a β-D-glucuronoside + H2O → D-glucopyranuronate + an alcohol

glycerophosphodiester degradation :
a glycerophosphodiester + H2O → an alcohol + sn-glycerol 3-phosphate + H+

phosphate acquisition , phosphate utilization in cell wall regeneration :
a phosphate monoester + H2O ↔ an alcohol + phosphate


an alcohol + NAD+ + H2O ← an organic hydroperoxide + NADH + H+
an α-D-glucuronoside + H2O → D-glucopyranuronate + an alcohol
an α amino acid ester + H2O → an alcohol + an α amino acid + H+
a phosphate monoester + H2O → an alcohol + phosphate
RH + a reduced [NADPH-hemoprotein reductase] + oxygen → ROH + an oxidized [NADPH-hemoprotein reductase] + H2O
an oligosaccharide with β-L-arabinopyranose at the non-reducing end + H2O → β-L-arabinopyranose + an alcohol
an N-acetyl-β-D-hexosaminide + H2O → an N-acetyl-β-D-hexosamine + an alcohol
a carboxylic ester + H2O → an alcohol + a carboxylate + H+
an acetic ester + H2O → an alcohol + acetate + H+
a reduced thioredoxin + an organic hydroperoxide → an oxidized thioredoxin + an alcohol + H2O
a 6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside + H2O → β-primeverose + an alcohol
an organic molecule + H2O + 2 oxygen → an alcohol + 2 superoxide + 2 H+
an N5-acyl-L-ornithine-ester + H2O → an N5-acyl-L-ornithine + an alcohol
α-L-fucoside + H2O → L-fucopyranose + an alcohol
a 2-deoxy-α-D-glucoside + H2O → 2-deoxy-D-glucose + an alcohol
a 6-phospho-β-D-galactoside + H2O → α-D-galactose 6-phosphate + an alcohol

glutathione redox reactions I :
a lipid hydroperoxide + 2 glutathione + H+a lipid + glutathione disulfide + 2 H2O

In Reactions of unknown directionality:

Not in pathways:
a monoterpenol + acetyl-CoA + H+ = a monoterpenol acetate ester + coenzyme A


an alcohol + 3'-phosphoadenylyl-sulfate = adenosine 3',5'-bisphosphate + an organosulfate + H+
an alcohol + NAD(P)+ = an aldehyde + NAD(P)H + H+
an alcohol + NADP+ = an aldehyde + NADPH + H+
trans-cinnamoyl-β-D-glucoside + an alcohol = β-D-glucose + alkyl cinnamate
an alcohol + acetyl-CoA = an acetic ester + coenzyme A
2 protein cysteines + an organic hydroperoxide = a protein disulfide + an alcohol + H2O
an organic molecule + an organic hydroperoxide = 2 an alcohol
an organic molecule + hydrogen peroxide = an alcohol + H2O

Enzymes activated by α-terpinyl cation, sorted by the type of activation, are:

Activator (Mechanism unknown) of: phosphoenolpyruvate carboxylase [Izui83]

Credits:
Created 01-Mar-2010 by Pujar A , Boyce Thompson Institute


References

Izui83: Izui K, Matsuda Y, Kameshita I, Katsuki H, Woods AE (1983). "Phosphoenolpyruvate carboxylase of Escherichia coli. Inhibition by various analogs and homologs of phosphoenolpyruvate." J Biochem (Tokyo) 1983;94(6);1789-95. PMID: 6368527

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Schilmiller09: Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009). "Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate." Proc Natl Acad Sci U S A 106(26);10865-70. PMID: 19487664


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sun Nov 23, 2014, BIOCYC13B.