Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Compound: chloride

Synonyms: chloride ion, Cl-

Superclasses: an ion an anion a halide anion

Component of:
MgCl2
AMO-1618
calcium chloride dihydrate
manganese chloride
dichlorocadmium
aluminum chloride
triethanolamine HCI
ferric chloride
potassium chloride
sodium chloride
cobalt chloride
calcium chloride
barium chloride
ammonium chloride

Chemical Formula: Cl

Molecular Weight: 35.453 Daltons

Monoisotopic Molecular Weight: 35.9766777421 Daltons

SMILES: [Cl-]

InChI: InChI=1S/ClH/h1H/p-1

InChIKey: InChIKey=VEXZGXHMUGYJMC-UHFFFAOYSA-M

Unification Links: ChEBI:17996 , ChemSpider:306 , HMDB:HMDB00492 , IAF1260:50130 , KEGG:C00698 , MetaboLights:MTBLC17996 , PubChem:312 , UMBBD-Compounds:c0884

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -0.3120594 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

geodin biosynthesis :
sulochrin + 2 chloride + hydrogen peroxide → dihydrogeodin + 2 H+ + 2 H2O

methylhalides biosynthesis (plants) :
S-adenosyl-L-methionine + chlorideS-adenosyl-L-homocysteine + methyl chloride

pyrrolnitrin biosynthesis :
L-tryptophan + chloride + FADH2 + oxygen → 7-chloro-L-tryptophan + FAD + 2 H2O
monodechloroaminopyrrolnitrin + chloride → aminopyrrolnitrin

rebeccamycin biosynthesis :
L-tryptophan + chloride + FADH2 + oxygen → 7-chloro-L-tryptophan + FAD + 2 H2O

Not in pathways:
8-demethylnovobiocic acid + chloride + FADH2 + oxygen → clorobiocic acid + FAD + 2 H2O

Reactions known to produce the compound:

1,2,4,5-tetrachlorobenzene degradation :
1,3,4,6-tetrachloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene → 3,4,6-trichlorocatechol + chloride + 2 H+

1,2-dichloroethane degradation :
1,2-dichloroethane + H2O → 2-chloroethanol + chloride + H+
chloroacetate + H2O → glycolate + chloride + H+

2,4,5-trichlorophenoxyacetate degradation :
5-chlorohydroxyquinol → 2-hydroxy-1,4-benzoquinone + chloride + 2 H+
2,5-dichloro-p-quinol + FADH2 + oxygen → 5-chlorohydroxyquinone + chloride + FAD + H2O + 3 H+
2,4,5-trichlorophenol + FADH2 + oxygen → 2,5-dichloro-p-quinone + chloride + FAD + H2O + H+

2,4,6-trichlorophenol degradation :
2,4,6-trichlorophenol + FADH2 + oxygen → 2,6-dichloro-p-hydroquinone + chloride + FAD + H2O
2,6-dichloro-p-hydroquinone + FADH2 + oxygen + H+ → 6-chlorohydroxyquinol + chloride + FAD + H2O

2,4-dichlorotoluene degradation :
3,5-dichloro-2-methyl-muconate → 2-chloro-5-methyl-dienelactone + chloride
3,5-dichloro-2-methyl-muconolactone + H+ → 3-chloro-2-methyl-dienelactone + chloride

2,5-dichlorotoluene degradation :
2,5-dichloro-3-methyl-muconolactone → 2-chloro-3-methyl-dienelactone + chloride + H+

2-chloroacrylate degradation I :
(S)-2-chloropropanoate + H2O → (R)-lactate + chloride + H+

2-chloroacrylate degradation II :
2-chloro-2-hydroxypropanoate → pyruvate + chloride + H+

2-chlorobenzoate degradation :
2-chlorobenzoate + NADH + oxygen + H+ → catechol + chloride + CO2 + NAD+

3,4,6-trichlorocatechol degradation :
5-chloromaleylacetate + NADH → 2-maleylacetate + chloride + NAD+
2,3,5-trichloro-cis,cis-muconate → 2,5-dichloro-trans-dienelactone + chloride
2,5-dichloromaleylacetate + NADH → 5-chloromaleylacetate + chloride + NAD+

3,4-dichlorobenzoate degradation :
6-chloro-2-hydroxy-4-carboxymuconate-6-semialdehyde → 2-pyrone-4,6-dicarboxylate + chloride + H+
3,4-dichlorobenzoate-cis-4,5-diol → 5-chloroprotocatechuate + chloride + H+

3,4-dichlorotoluene degradation :
2,3-dichloro-5-methyl-muconate → 5-chloro-2-methyl-dienelactone + chloride

3,5,6-trichloro-2-pyridinol degradation :
3,5,6-trichloro-2-pyridinol + FADH2 + oxygen + 2 H2O → 3,6-dihydroxypyridine-2,5-dione + 3 chloride + FAD + H2O + 4 H+

3,5-dichlorocatechol degradation :
2,4-dichloro-cis,cis-muconate → 2-chloro-trans-dienelactone + chloride

3-chlorobenzoate degradation II (via protocatechuate) :
6-chloro-2-hydroxy-4-carboxymuconate-6-semialdehyde → 2-pyrone-4,6-dicarboxylate + chloride + H+
3-chlorobenzoate-cis-3,4-diol + NAD+ → protocatechuate + chloride + NADH

3-chlorobenzoate degradation III (via gentisate) :
3-chlorobenzoate + H2O → 3-hydroxybenzoate + chloride + H+

3-chlorocatechol degradation I (ortho) :
(+)-5-chloromuconolactone → trans-dienelactone + chloride + H+

3-chlorocatechol degradation II (ortho) :
cis-dienelactone + chloride + H+ ← (+)-5-chloromuconolactone

3-chlorocatechol degradation III (meta pathway) :
5-chlorocarbonyl-2-hydroxy-penta-2,4-dienate + H2O → (2Z,4E)-2-hydroxyhexa-2,4-dienedioate + chloride + 2 H+

4,5-dichlorocatechol degradation :
5-chloromaleylacetate + NADH → 2-maleylacetate + chloride + NAD+
2,3-dichloro-cis,cis-muconate → 5-chloro-trans-dienelactone + chloride

4-chlorobenzoate degradation :
4-chlorobenzoyl-coA + H2O → chloride + 4-hydroxybenzoyl-CoA + H+

4-chlorocatechol degradation :
cis-dienelactone + chloride ← 3-chloro-cis,cis-muconate

5-chloro-3-methyl-catechol degradation :
4-chloro-2-methyl-cis,cis-muconate → 2-methyl-cis-dienelactone + chloride

atrazine degradation I (aerobic) , atrazine degradation III :
atrazine + H2O → hydroxyatrazine + chloride + H+

carbon tetrachloride degradation I :
carbon tetrachloride + H+ → chloroform + chloride
chloroform + H+ → dichloromethane + chloride
dichloromethane + H+ → methyl chloride + chloride
methyl chloride + H+ → methane + chloride

carbon tetrachloride degradation II :
dichlorocarbene + 2 H2O → formate + 2 chloride + 3 H+
dichlorocarbene + H2O → carbon monoxide + 2 chloride + 2 H+
carbon tetrachloride + a reduced electron acceptor → trichloromethyl radical + chloride + an oxidized electron acceptor + 2 H+
trichloromethyl radical + a reduced electron acceptor → dichlorocarbene + chloride + an oxidized electron acceptor + 2 H+

chlorosalicylate degradation :
(+)-4-chloromuconolactone → protoanemonin + chloride + CO2
(+)-4-chloromuconolactone + H2O → 2-maleylacetate + chloride + 2 H+

deethylsimazine degradation :
deethylsimazine + H2O → N-ethylammeline + chloride + H+

γ-hexachlorocyclohexane degradation :
γ-pentachlorocyclohexene → 1,3,4,6-tetrachloro-1,4-cyclohexadiene + chloride + H+
2,4,5-trichloro-2,5-cyclohexadiene-1-diol → 2,5-dichlorophenol + chloride + 2 H+
5-chlorocarbonyl-4-hydroxy-penta-2,4-dienate + H2O → 2-maleylacetate + chloride + H+
1,3,4,6-tetrachloro-1,4-cyclohexadiene → chloride + 1,2,4-trichlorobenzene + H+
2,4,5-trichloro-2,5-cyclohexadiene-1-diol + H2O → 2,5-dichloro-2,5-cyclohexadiene-1,4-diol + chloride + H+

pentachlorophenol degradation :
2,3,6-trichlorohydroquinone + 2 glutathione → 2,6-dichloro-p-hydroquinone + chloride + glutathione disulfide + H+
pentachlorophenol + 2 NADPH + oxygen → tetrachlorohydroquinone + chloride + 2 NADP+ + H2O

tetrachloroethene degradation :
vinyl-chloride + a reduced electron acceptor → ethylene + chloride + an oxidized electron acceptor + H+
trichloroethylene + a reduced electron acceptor → dichloroethene + chloride + an oxidized electron acceptor + H+
dichloroethene + a reduced electron acceptor → vinyl-chloride + chloride + an oxidized electron acceptor + H+
chloride + trichloroethylene + an oxidized electron acceptor + H+ ← tetrachloroethene + a reduced electron acceptor

trichloroethylene degradation :
trichloroacetate + 2 H2O → oxalate + 3 chloride + 4 H+
trichloroethylene + NADPH + oxygen → dichloroacetate + chloride + NADP+ + H+

Not in pathways:
4-chlorophenylacetate + NADH + oxygen → 3,4-dihydroxyphenylacetate + chloride + NAD+
trichloromethanethiol → thiophosgene + chloride + H+
thiophosgene + hydrogen sulfide → carbon disulfide + 2 chloride + 2 H+


an (S)-2-haloacid + H2O → an (R)-2-hydroxyacid + a halide anion + H+
a 1-haloalkane + H2O → a primary alcohol + a halide anion
2-halobenzoate + NADH + oxygen + H+ → catechol + a halide anion + CO2 + NAD+

Reactions known to both consume and produce the compound:

1,4-dichlorobenzene degradation :
2,5-dichloro-cis,cis-muconate ↔ 2-chloro-trans-dienelactone + chloride
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+

2,4,6-trichlorophenol degradation , 3,5-dichlorocatechol degradation :
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+

chlorate reduction , perchlorate reduction :
chloride + oxygen ↔ chlorite

γ-hexachlorocyclohexane degradation :
1,3,4,6-tetrachloro-1,4-cyclohexadiene + H2O ↔ 2,4,5-trichloro-2,5-cyclohexadiene-1-diol + chloride + H+
2,5-dichloro-p-quinol + 2 glutathione ↔ chlorohydroquinone + glutathione disulfide + chloride + H+
γ-hexachlorocyclohexane ↔ γ-pentachlorocyclohexene + chloride + H+

pentachlorophenol degradation :
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+
2,6-dichloro-p-hydroquinone + oxygen + H2O ↔ 2-chloromaleylacetate + chloride + 2 H+
tetrachlorohydroquinone + 2 glutathione ↔ 2,3,6-trichlorohydroquinone + chloride + glutathione disulfide

salinosporamide A biosynthesis :
S-adenosyl-L-methionine + chloride ↔ 5'-deoxy-5'-chloroadenosine + L-methionine

Not in pathways:
1-chloro-2,4-dinitrobenzene + glutathione ↔ 2,4-dinitrophenyl-S-glutathione + chloride + H+
2,6-dichloro-p-hydroquinone + H2O ↔ 6-chlorohydroxyquinol + chloride

In Reactions of unknown directionality:

Not in pathways:
3-chloro-L-alanine + thioglycolate = S-Carboxymethyl-L-cysteine + chloride + H+
4-chlorobenzoate + H2O = chloride + 4-hydroxybenzoate + H+
bromochloromethane + H2O = bromide + chloride + formaldehyde + 2 H+
3-chloro-D-alanine + thioglycolate = S-carboxymethyl-D-cysteine + chloride + H+
1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane = 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene + chloride + H+
2,5-dichlorophenol + a reduced electron acceptor = 3-chlorophenol + chloride + an oxidized electron acceptor
2,6-dichlorophenol + a reduced electron acceptor = 2-chlorophenol + chloride + an oxidized electron acceptor
4-chloro-2-methyl-cis,cis-muconate = 2-methyl-trans-dienelactone + chloride
deethylatrazine + H2O = 2-hydroxy-4-isopropylamino-6-amino-s-triazine + chloride + H+
dichloromethane + H2O = formaldehyde + 2 chloride + 2 H+
2,4-dichlorophenol + a reduced electron acceptor = 4-chlorophenol + chloride + an oxidized electron acceptor + H+
2,3-dichlorophenol + a reduced electron acceptor = 3-chlorophenol + chloride + an oxidized electron acceptor + H+
2-chlorophenol + a reduced electron acceptor = phenol + chloride + an oxidized electron acceptor + H+
3-chloro-4-hydroxyphenylacetate + a reduced electron acceptor = 4-hydroxyphenylacetate + chloride + an oxidized electron acceptor + H+
dichloroethene + H+ = vinyl-chloride + chloride
trans-1,2-DCE + H+ = vinyl-chloride + chloride
L-2-amino-4-chloropent-4-enoate + H2O = 2-oxopent-4-enoate + ammonium + chloride + H+
3,5,6-trichloro-2-pyridinol + FADH2 + oxygen = 3,6-dichloropyridine-2,5-dione + chloride + FAD + H2O + 2 H+
3,6-dichloropyridine-2,5-dione + H2O = 3-chloro-6-hydroxypyridine-2,5-dione + chloride + H+
3-chloro-6-hydroxypyridine-2,5-dione + H2O = 3,6-dihydroxypyridine-2,5-dione + chloride + H+
3-chloro-D-alanine = 2-aminoprop-2-enoate + chloride + 2 H+
3-chloro-D-alanine + H2O = pyruvate + ammonium + chloride + H+
4-chlorobenzoyl-coA + chloride + NADP+ = 2,4-dichlorobenzoyl-CoA + NADPH
(S)-β-tyrosyl-[SgcC2] + chloride + FADH2 + oxygen = (S)-3-chloro-β-tyrosyl-[SgcC2] + FAD + 2 H2O
chloride + hydrogen peroxide + H+ = hypochlorous acid + H2O
chloride + benzene-1,4-diol + glutathione disulfide + H+ = chlorohydroquinone + 2 glutathione
RH + chloride + hydrogen peroxide + H+ = RCl + 2 H2O
L-tryptophan + chloride + FAD + 2 H+ = 5-chloro-L-tryptophan + FADH2
3-methyl-cis-dienelactone + chloride + H+ = 5-chloro-3-methyl-cis-dienelactone


an (R)-2-haloacid + H2O = an (S)-2-hydroxyacid + a halide anion + H+
a haloacetate + H2O = glycolate + a halide anion + H+
an (S)-2-haloacid + H2O = an (S)-2-hydroxyacid + a halide anion + H+
an (R)-2-haloacid + H2O = an (R)-2-hydroxyacid + a halide anion + H+

In Transport reactions:
chloride[cytosol] + ATP + H2O ↔ chloride[extracellular space] + ADP + phosphate + H+ ,
chloride[extracellular space] + ATP + H2O ↔ chloride[cytosol] + ADP + phosphate + H+ ,
chloride[periplasmic space]chloride[cytosol] ,
2 chloride[periplasmic space] + H+[cytosol] ↔ 2 chloride[cytosol] + H+[periplasmic space]

Enzymes activated by chloride, sorted by the type of activation, are:

Activator (Mechanism unknown) of: acyl-CoA hydrolase (medium chain) [Alexson88] , acyl-CoA hydrolase (short chain) [Alexson88]

Enzymes inhibited by chloride, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: 3-dehydroquinate dehydratase [Chaudhuri86] , cyanase [Little87, Comment 1] , 5,10-methylenetetrahydrofolate:glycine hydroxymethyltransferase [Hopkins86] , ethylnitronate monooxygenase [Francis09] , protocatechuate:oxygen 3,4-oxidoreductase [Bull81]

Inhibitor (Noncompetitive) of: sulfite:cytochrome c oxidoreductase [Suzuki94]

Inhibitor (Mechanism unknown) of: isocitrate lyase , α-dehydro-β-deoxy-D-glucarate aldolase [Fish66] , formate dehydrogenase [Axley90] , 2-hydroxybiphenyl-3-monooxygenase [Suske97] , deguelin cyclase [Crombie92] , kynurenine 3-monooxygenase [Breton00] , adenylosuccinate synthetase [Lipps99] , p-hydroxybenzoate hydroxylase [Husain78] , NAD-dependent formate dehydrogenase [Jollie91] , glycine-sarcosine methyltransferase [Waditee03]

Inhibitor (Other types) of: keratan galactose-6-sulfatase [Bielicki91] , chondroitin N-acetylgalactosamine-6-sulfatase [Bielicki91]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: phosphoglycolate phosphatase


References

Alexson88: Alexson SE, Nedergaard J (1988). "A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria." J Biol Chem 263(27);13564-71. PMID: 2901416

Axley90: Axley MJ, Grahame DA, Stadtman TC (1990). "Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component." J Biol Chem 1990;265(30);18213-8. PMID: 2211698

Bielicki91: Bielicki J, Hopwood JJ (1991). "Human liver N-acetylgalactosamine 6-sulphatase. Purification and characterization." Biochem J 279 ( Pt 2);515-20. PMID: 1953646

Breton00: Breton J, Avanzi N, Magagnin S, Covini N, Magistrelli G, Cozzi L, Isacchi A (2000). "Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase." Eur J Biochem 267(4);1092-9. PMID: 10672018

Bull81: Bull C, Ballou DP (1981). "Purification and properties of protocatechuate 3,4-dioxygenase from Pseudomonas putida. A new iron to subunit stoichiometry." J Biol Chem 256(24);12673-80. PMID: 6273403

Chaudhuri86: Chaudhuri S, Lambert JM, McColl LA, Coggins JR (1986). "Purification and characterization of 3-dehydroquinase from Escherichia coli." Biochem J 1986;239(3);699-704. PMID: 2950851

Crombie92: Crombie, L., Rossiter, J.T., van Bruggen, N., Whiting, D.A. (1992). "Deguelin cyclase, a prenyl to chromen transforming enzyme from Tephrosia vogelii." Phytochemistry. 31(4): 451-461.

Fish66: Fish D, Blumenthal H "2-keto-3-deoxy-D-glucarate aldolase." Meth Enz 1966;9:529-534.

Francis09: Francis K, Gadda G (2009). "Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase." Bioorg Chem 37(5);167-72. PMID: 19683782

Hopkins86: Hopkins S, Schirch V (1986). "Properties of a serine hydroxymethyltransferase in which an active site histidine has been changed to an asparagine by site-directed mutagenesis." J Biol Chem 1986;261(7);3363-9. PMID: 3512553

Husain78: Husain M, Schopfer LM, Massey V (1978). "P-Hydroxybenzoate hydroxylase and melilotate hydroxylase." Methods Enzymol 53;543-58. PMID: 30879

Jollie91: Jollie DR, Lipscomb JD (1991). "Formate dehydrogenase from Methylosinus trichosporium OB3b. Purification and spectroscopic characterization of the cofactors." J Biol Chem 266(32);21853-63. PMID: 1657982

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lipps99: Lipps G, Krauss G (1999). "Adenylosuccinate synthase from Saccharomyces cerevisiae: homologous overexpression, purification and characterization of the recombinant protein." Biochem J 1999;341 ( Pt 3);537-43. PMID: 10417315

Little87: Little RM, Anderson PM (1987). "Structural properties of cyanase. Denaturation, renaturation, and role of sulfhydryls and oligomeric structure in catalytic activity." J Biol Chem 1987;262(21);10120-6. PMID: 3301828

Suske97: Suske WA, Held M, Schmid A, Fleischmann T, Wubbolts MG, Kohler HP (1997). "Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1." J Biol Chem 272(39);24257-65. PMID: 9305879

Suzuki94: Suzuki, I. (1994). "Sulfite:cytochrome c oxidoreductase of Thiobacilli." Methods Enzymol. 243(32):447-454.

Waditee03: Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T, Takabe T (2003). "Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica." J Biol Chem 278(7);4932-42. PMID: 12466265


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Mon Dec 22, 2014, BIOCYC14A.