Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: chloride

Synonyms: chloride ion, Cl-

Superclasses: an ion an anion a halide anion

Component of:
MgCl2
AMO-1618
calcium chloride dihydrate
manganese chloride
dichlorocadmium
aluminum chloride
triethanolamine HCI
ferric chloride
potassium chloride
sodium chloride
cobalt chloride
calcium chloride
barium chloride
ammonium chloride

Chemical Formula: Cl

Molecular Weight: 35.453 Daltons

Monoisotopic Molecular Weight: 34.96885271 Daltons

SMILES: [Cl-]

InChI: InChI=1S/ClH/h1H/p-1

InChIKey: InChIKey=VEXZGXHMUGYJMC-UHFFFAOYSA-M

Unification Links: ChEBI:17996 , ChemSpider:306 , HMDB:HMDB00492 , IAF1260:50130 , KEGG:C00698 , MetaboLights:MTBLC17996 , PubChem:312 , UMBBD-Compounds:c0884

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -0.3120594 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

geodin biosynthesis :
sulochrin + 2 chloride + hydrogen peroxide → dihydrogeodin + 2 H+ + 2 H2O

methylhalides biosynthesis (plants) :
S-adenosyl-L-methionine + chlorideS-adenosyl-L-homocysteine + methyl chloride

pyrrolnitrin biosynthesis :
L-tryptophan + chloride + FADH2 + oxygen → 7-chloro-L-tryptophan + FAD + 2 H2O
monodechloroaminopyrrolnitrin + chloride → aminopyrrolnitrin

rebeccamycin biosynthesis :
L-tryptophan + chloride + FADH2 + oxygen → 7-chloro-L-tryptophan + FAD + 2 H2O

Not in pathways:
8-demethylnovobiocic acid + chloride + FADH2 + oxygen → clorobiocic acid + FAD + 2 H2O

Reactions known to produce the compound:

1,2,4,5-tetrachlorobenzene degradation :
1,3,4,6-tetrachloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene → 3,4,6-trichlorocatechol + chloride + 2 H+

1,2-dichloroethane degradation :
1,2-dichloroethane + H2O → 2-chloroethanol + chloride + H+
chloroacetate + H2O → glycolate + chloride + H+

2,4,5-trichlorophenoxyacetate degradation :
5-chlorohydroxyquinol → 2-hydroxy-1,4-benzoquinone + chloride + 2 H+
2,5-dichloro-p-quinol + FADH2 + oxygen → 5-chlorohydroxyquinone + chloride + FAD + H2O + 3 H+
2,4,5-trichlorophenol + FADH2 + oxygen → 2,5-dichloro-p-quinone + chloride + FAD + H2O + H+

2,4,6-trichlorophenol degradation :
2,4,6-trichlorophenol + FADH2 + oxygen → 2,6-dichloro-p-hydroquinone + chloride + FAD + H2O
2,6-dichloro-p-hydroquinone + FADH2 + oxygen + H+ → 6-chlorohydroxyquinol + chloride + FAD + H2O

2,4-dichlorotoluene degradation :
3,5-dichloro-2-methyl-muconate → 2-chloro-5-methyl-dienelactone + chloride
3,5-dichloro-2-methyl-muconolactone + H+ → 3-chloro-2-methyl-dienelactone + chloride

2,5-dichlorotoluene degradation :
2,5-dichloro-3-methyl-muconolactone → 2-chloro-3-methyl-dienelactone + chloride + H+

2-chloroacrylate degradation I :
(S)-2-chloropropanoate + H2O → (R)-lactate + chloride + H+

2-chloroacrylate degradation II :
2-chloro-2-hydroxypropanoate → pyruvate + chloride + H+

2-chlorobenzoate degradation :
2-chlorobenzoate + NADH + oxygen + H+ → catechol + chloride + CO2 + NAD+

3,4,6-trichlorocatechol degradation :
5-chloromaleylacetate + NADH → 2-maleylacetate + chloride + NAD+
2,3,5-trichloro-cis,cis-muconate → 2,5-dichloro-trans-dienelactone + chloride
2,5-dichloromaleylacetate + NADH → 5-chloromaleylacetate + chloride + NAD+

3,4-dichlorobenzoate degradation :
6-chloro-2-hydroxy-4-carboxymuconate-6-semialdehyde → 2-pyrone-4,6-dicarboxylate + chloride + H+
3,4-dichlorobenzoate-cis-4,5-diol → 5-chloroprotocatechuate + chloride + H+

3,4-dichlorotoluene degradation :
2,3-dichloro-5-methyl-muconate → 5-chloro-2-methyl-dienelactone + chloride

3,5,6-trichloro-2-pyridinol degradation :
3,5,6-trichloro-2-pyridinol + FADH2 + oxygen + 2 H2O → 3,6-dihydroxypyridine-2,5-dione + 3 chloride + FAD + H2O + 4 H+

3,5-dichlorocatechol degradation :
2,4-dichloro-cis,cis-muconate → 2-chloro-trans-dienelactone + chloride

3-chlorobenzoate degradation II (via protocatechuate) :
6-chloro-2-hydroxy-4-carboxymuconate-6-semialdehyde → 2-pyrone-4,6-dicarboxylate + chloride + H+
3-chlorobenzoate-cis-3,4-diol + NAD+ → protocatechuate + chloride + NADH

3-chlorobenzoate degradation III (via gentisate) :
3-chlorobenzoate + H2O → 3-hydroxybenzoate + chloride + H+

3-chlorocatechol degradation I (ortho) :
(+)-5-chloromuconolactone → trans-dienelactone + chloride + H+

3-chlorocatechol degradation II (ortho) :
cis-dienelactone + chloride + H+ ← (+)-5-chloromuconolactone

3-chlorocatechol degradation III (meta pathway) :
5-chlorocarbonyl-2-hydroxy-penta-2,4-dienate + H2O → (2Z,4E)-2-hydroxyhexa-2,4-dienedioate + chloride + 2 H+

4,5-dichlorocatechol degradation :
5-chloromaleylacetate + NADH → 2-maleylacetate + chloride + NAD+
2,3-dichloro-cis,cis-muconate → 5-chloro-trans-dienelactone + chloride

4-chlorobenzoate degradation :
4-chlorobenzoyl-coA + H2O → chloride + 4-hydroxybenzoyl-CoA + H+

4-chlorocatechol degradation :
cis-dienelactone + chloride ← 3-chloro-cis,cis-muconate

5-chloro-3-methyl-catechol degradation :
4-chloro-2-methyl-cis,cis-muconate → 2-methyl-cis-dienelactone + chloride

atrazine degradation I (aerobic) , atrazine degradation III :
atrazine + H2O → hydroxyatrazine + chloride + H+

carbon tetrachloride degradation I :
carbon tetrachloride + H+ → chloroform + chloride
chloroform + H+ → dichloromethane + chloride
dichloromethane + H+ → methyl chloride + chloride
methyl chloride + H+ → methane + chloride

carbon tetrachloride degradation II :
dichlorocarbene + 2 H2O → formate + 2 chloride + 3 H+
dichlorocarbene + H2O → carbon monoxide + 2 chloride + 2 H+
carbon tetrachloride + a reduced electron acceptor → trichloromethyl radical + chloride + an oxidized electron acceptor + 2 H+
trichloromethyl radical + a reduced electron acceptor → dichlorocarbene + chloride + an oxidized electron acceptor + 2 H+

chlorosalicylate degradation :
(+)-4-chloromuconolactone → protoanemonin + chloride + CO2
(+)-4-chloromuconolactone + H2O → 2-maleylacetate + chloride + 2 H+

deethylsimazine degradation :
deethylsimazine + H2O → N-ethylammeline + chloride + H+

γ-hexachlorocyclohexane degradation :
γ-pentachlorocyclohexene → 1,3,4,6-tetrachloro-1,4-cyclohexadiene + chloride + H+
2,4,5-trichloro-2,5-cyclohexadiene-1-diol → 2,5-dichlorophenol + chloride + 2 H+
5-chlorocarbonyl-4-hydroxy-penta-2,4-dienate + H2O → 2-maleylacetate + chloride + H+
1,3,4,6-tetrachloro-1,4-cyclohexadiene → chloride + 1,2,4-trichlorobenzene + H+
2,4,5-trichloro-2,5-cyclohexadiene-1-diol + H2O → 2,5-dichloro-2,5-cyclohexadiene-1,4-diol + chloride + H+

pentachlorophenol degradation :
2,3,6-trichlorohydroquinone + 2 glutathione → 2,6-dichloro-p-hydroquinone + chloride + glutathione disulfide + H+
pentachlorophenol + 2 NADPH + oxygen → tetrachlorohydroquinone + chloride + 2 NADP+ + H2O

tetrachloroethene degradation :
vinyl-chloride + a reduced electron acceptor → ethylene + chloride + an oxidized electron acceptor + H+
trichloroethylene + a reduced electron acceptor → dichloroethene + chloride + an oxidized electron acceptor + H+
dichloroethene + a reduced electron acceptor → vinyl-chloride + chloride + an oxidized electron acceptor + H+
chloride + trichloroethylene + an oxidized electron acceptor + H+ ← tetrachloroethene + a reduced electron acceptor

trichloroethylene degradation :
trichloroacetate + 2 H2O → oxalate + 3 chloride + 4 H+
trichloroethylene + NADPH + oxygen → dichloroacetate + chloride + NADP+ + H+

Not in pathways:
4-chlorophenylacetate + NADH + oxygen → 3,4-dihydroxyphenylacetate + chloride + NAD+
trichloromethanethiol → thiophosgene + chloride + H+
thiophosgene + hydrogen sulfide → carbon disulfide + 2 chloride + 2 H+


an (S)-2-haloacid + H2O → an (R)-2-hydroxyacid + a halide anion + H+
a 1-haloalkane + H2O → a primary alcohol + a halide anion
2-halobenzoate + NADH + oxygen + H+ → catechol + a halide anion + CO2 + NAD+

Reactions known to both consume and produce the compound:

1,4-dichlorobenzene degradation :
2,5-dichloro-cis,cis-muconate ↔ 2-chloro-trans-dienelactone + chloride
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+

2,4,6-trichlorophenol degradation , 3,5-dichlorocatechol degradation :
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+

chlorate reduction , perchlorate reduction :
chloride + oxygen ↔ chlorite

γ-hexachlorocyclohexane degradation :
1,3,4,6-tetrachloro-1,4-cyclohexadiene + H2O ↔ 2,4,5-trichloro-2,5-cyclohexadiene-1-diol + chloride + H+
2,5-dichloro-p-quinol + 2 glutathione ↔ chlorohydroquinone + glutathione disulfide + chloride + H+
γ-hexachlorocyclohexane ↔ γ-pentachlorocyclohexene + chloride + H+

pentachlorophenol degradation :
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+
2,6-dichloro-p-hydroquinone + oxygen + H2O ↔ 2-chloromaleylacetate + chloride + 2 H+
tetrachlorohydroquinone + 2 glutathione ↔ 2,3,6-trichlorohydroquinone + chloride + glutathione disulfide

salinosporamide A biosynthesis :
S-adenosyl-L-methionine + chloride ↔ 5'-deoxy-5'-chloroadenosine + L-methionine

Not in pathways:
1-chloro-2,4-dinitrobenzene + glutathione ↔ 2,4-dinitrophenyl-S-glutathione + chloride + H+
2,6-dichloro-p-hydroquinone + H2O ↔ 6-chlorohydroxyquinol + chloride

In Reactions of unknown directionality:

Not in pathways:
3-chloro-L-alanine + thioglycolate = S-Carboxymethyl-L-cysteine + chloride + H+
4-chlorobenzoate + H2O = chloride + 4-hydroxybenzoate + H+
bromochloromethane + H2O = bromide + chloride + formaldehyde + 2 H+
3-chloro-D-alanine + thioglycolate = S-carboxymethyl-D-cysteine + chloride + H+
1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane = 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene + chloride + H+
2,5-dichlorophenol + a reduced electron acceptor = 3-chlorophenol + chloride + an oxidized electron acceptor
2,6-dichlorophenol + a reduced electron acceptor = 2-chlorophenol + chloride + an oxidized electron acceptor
4-chloro-2-methyl-cis,cis-muconate = 2-methyl-trans-dienelactone + chloride
deethylatrazine + H2O = 2-hydroxy-4-isopropylamino-6-amino-s-triazine + chloride + H+
dichloromethane + H2O = formaldehyde + 2 chloride + 2 H+
2,4-dichlorophenol + a reduced electron acceptor = 4-chlorophenol + chloride + an oxidized electron acceptor + H+
2,3-dichlorophenol + a reduced electron acceptor = 3-chlorophenol + chloride + an oxidized electron acceptor + H+
2-chlorophenol + a reduced electron acceptor = phenol + chloride + an oxidized electron acceptor + H+
3-chloro-4-hydroxyphenylacetate + a reduced electron acceptor = 4-hydroxyphenylacetate + chloride + an oxidized electron acceptor + H+
dichloroethene + H+ = vinyl-chloride + chloride
trans-1,2-DCE + H+ = vinyl-chloride + chloride
L-2-amino-4-chloropent-4-enoate + H2O = 2-oxopent-4-enoate + ammonium + chloride + H+
3,5,6-trichloro-2-pyridinol + FADH2 + oxygen = 3,6-dichloropyridine-2,5-dione + chloride + FAD + H2O + 2 H+
3,6-dichloropyridine-2,5-dione + H2O = 3-chloro-6-hydroxypyridine-2,5-dione + chloride + H+
3-chloro-6-hydroxypyridine-2,5-dione + H2O = 3,6-dihydroxypyridine-2,5-dione + chloride + H+
3-chloro-D-alanine = 2-aminoprop-2-enoate + chloride + 2 H+
3-chloro-D-alanine + H2O = pyruvate + ammonium + chloride + H+
4-chlorobenzoyl-coA + chloride + NADP+ = 2,4-dichlorobenzoyl-CoA + NADPH
(S)-β-tyrosyl-[SgcC2] + chloride + FADH2 + oxygen = (S)-3-chloro-β-tyrosyl-[SgcC2] + FAD + 2 H2O
chloride + hydrogen peroxide + H+ = hypochlorous acid + H2O
chloride + glutathione disulfide + benzene-1,4-diol + H+ = chlorohydroquinone + 2 glutathione
RH + chloride + hydrogen peroxide + H+ = RCl + 2 H2O
L-tryptophan + chloride + FAD + 2 H+ = 5-chloro-L-tryptophan + FADH2
3-methyl-cis-dienelactone + chloride + H+ = 5-chloro-3-methyl-cis-dienelactone


an (R)-2-haloacid + H2O = an (S)-2-hydroxyacid + a halide anion + H+
a haloacetate + H2O = glycolate + a halide anion + H+
an (S)-2-haloacid + H2O = an (S)-2-hydroxyacid + a halide anion + H+
an (R)-2-haloacid + H2O = an (R)-2-hydroxyacid + a halide anion + H+

In Transport reactions:
chloride[cytosol] + ATP + H2O ↔ chloride[extracellular space] + ADP + phosphate + H+ ,
chloride[extracellular space] + ATP + H2O ↔ chloride[cytosol] + ADP + phosphate + H+ ,
chloride[periplasmic space]chloride[cytosol] ,
2 chloride[periplasmic space] + H+[cytosol] ↔ 2 chloride[cytosol] + H+[periplasmic space]

Enzymes activated by chloride, sorted by the type of activation, are:

Activator (Mechanism unknown) of: acyl-CoA hydrolase (medium chain) [Alexson88] , acyl-CoA hydrolase (short chain) [Alexson88]

Enzymes inhibited by chloride, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: 3-dehydroquinate dehydratase [Chaudhuri86] , cyanase [Little87, Comment 1] , 5,10-methylenetetrahydrofolate:glycine hydroxymethyltransferase [Hopkins86] , ethylnitronate monooxygenase [Francis09] , protocatechuate:oxygen 3,4-oxidoreductase [Bull81]

Inhibitor (Noncompetitive) of: sulfite:cytochrome c oxidoreductase [Suzuki94]

Inhibitor (Mechanism unknown) of: isocitrate lyase , α-dehydro-β-deoxy-D-glucarate aldolase [Fish66] , formate dehydrogenase [Axley90] , 2-hydroxybiphenyl-3-monooxygenase [Suske97] , deguelin cyclase [Crombie92] , kynurenine 3-monooxygenase [Breton00] , adenylosuccinate synthetase [Lipps99] , p-hydroxybenzoate hydroxylase [Husain78] , NAD-dependent formate dehydrogenase [Jollie91] , glycine-sarcosine methyltransferase [Waditee03]

Inhibitor (Other types) of: keratan galactose-6-sulfatase [Bielicki91] , chondroitin N-acetylgalactosamine-6-sulfatase [Bielicki91]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: phosphoglycolate phosphatase


References

Alexson88: Alexson SE, Nedergaard J (1988). "A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria." J Biol Chem 263(27);13564-71. PMID: 2901416

Axley90: Axley MJ, Grahame DA, Stadtman TC (1990). "Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component." J Biol Chem 1990;265(30);18213-8. PMID: 2211698

Bielicki91: Bielicki J, Hopwood JJ (1991). "Human liver N-acetylgalactosamine 6-sulphatase. Purification and characterization." Biochem J 279 ( Pt 2);515-20. PMID: 1953646

Breton00: Breton J, Avanzi N, Magagnin S, Covini N, Magistrelli G, Cozzi L, Isacchi A (2000). "Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase." Eur J Biochem 267(4);1092-9. PMID: 10672018

Bull81: Bull C, Ballou DP (1981). "Purification and properties of protocatechuate 3,4-dioxygenase from Pseudomonas putida. A new iron to subunit stoichiometry." J Biol Chem 256(24);12673-80. PMID: 6273403

Chaudhuri86: Chaudhuri S, Lambert JM, McColl LA, Coggins JR (1986). "Purification and characterization of 3-dehydroquinase from Escherichia coli." Biochem J 1986;239(3);699-704. PMID: 2950851

Crombie92: Crombie, L., Rossiter, J.T., van Bruggen, N., Whiting, D.A. (1992). "Deguelin cyclase, a prenyl to chromen transforming enzyme from Tephrosia vogelii." Phytochemistry. 31(4): 451-461.

Fish66: Fish D, Blumenthal H "2-keto-3-deoxy-D-glucarate aldolase." Meth Enz 1966;9:529-534.

Francis09: Francis K, Gadda G (2009). "Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase." Bioorg Chem 37(5);167-72. PMID: 19683782

Hopkins86: Hopkins S, Schirch V (1986). "Properties of a serine hydroxymethyltransferase in which an active site histidine has been changed to an asparagine by site-directed mutagenesis." J Biol Chem 1986;261(7);3363-9. PMID: 3512553

Husain78: Husain M, Schopfer LM, Massey V (1978). "P-Hydroxybenzoate hydroxylase and melilotate hydroxylase." Methods Enzymol 53;543-58. PMID: 30879

Jollie91: Jollie DR, Lipscomb JD (1991). "Formate dehydrogenase from Methylosinus trichosporium OB3b. Purification and spectroscopic characterization of the cofactors." J Biol Chem 266(32);21853-63. PMID: 1657982

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lipps99: Lipps G, Krauss G (1999). "Adenylosuccinate synthase from Saccharomyces cerevisiae: homologous overexpression, purification and characterization of the recombinant protein." Biochem J 1999;341 ( Pt 3);537-43. PMID: 10417315

Little87: Little RM, Anderson PM (1987). "Structural properties of cyanase. Denaturation, renaturation, and role of sulfhydryls and oligomeric structure in catalytic activity." J Biol Chem 1987;262(21);10120-6. PMID: 3301828

Suske97: Suske WA, Held M, Schmid A, Fleischmann T, Wubbolts MG, Kohler HP (1997). "Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1." J Biol Chem 272(39);24257-65. PMID: 9305879

Suzuki94: Suzuki, I. (1994). "Sulfite:cytochrome c oxidoreductase of Thiobacilli." Methods Enzymol. 243(32):447-454.

Waditee03: Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T, Takabe T (2003). "Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica." J Biol Chem 278(7);4932-42. PMID: 12466265


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Thu Nov 27, 2014, BIOCYC13A.