Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
twitter

MetaCyc Compound: L-arginine

Abbrev Name: arg

Synonyms: 2-amino-5-guanidinovaleric acid, R, arginine, arg, L-arg

Superclasses: an acid all carboxy acids a carboxylate an amino acid a basic amino acid
an acid all carboxy acids a carboxylate an amino acid a polar amino acid a positively-charged polar amino acid
an acid all carboxy acids a carboxylate an amino acid an alpha amino acid a standard alpha amino acid
an acid all carboxy acids a carboxylate an amino acid an L-amino acid
an amino acid or its derivative an amino acid a basic amino acid
an amino acid or its derivative an amino acid a polar amino acid a positively-charged polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an L-amino acid

Chemical Formula: C6H15N4O2

Molecular Weight: 175.21 Daltons

Monoisotopic Molecular Weight: 174.1116757144 Daltons

L-arginine compound structure

pKa 1: 2.18

SMILES: C(NC(N)=[N+])CCC([N+])C(=O)[O-]

InChI: InChI=1S/C6H14N4O2/c7-4(5(11)12)2-1-3-10-6(8)9/h4H,1-3,7H2,(H,11,12)(H4,8,9,10)/p+1/t4-/m0/s1

InChIKey: InChIKey=ODKSFYDXXFIFQN-BYPYZUCNSA-O

Unification Links: CAS:74-79-3 , ChEBI:32682 , ChemSpider:1266045 , HMDB:HMDB00517 , IAF1260:33707 , KEGG:C00062 , MetaboLights:MTBLC32682 , PubChem:1549073

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 79.88474 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

blasticidin S biosynthesis :
L-arginine → (3S)-β-arginine

clavulanate biosynthesis :
D-glyceraldehyde 3-phosphate + L-arginine → L-N2-(2-carboxyethyl)arginine + phosphate + 2 H+

creatine biosynthesis :
glycine + L-arginine → guanidinoacetate + L-ornithine

cyanophycin metabolism :
cyanophycin primer-L-aspartate + L-arginine + ATP → cyanophycin + ADP + phosphate
[cyanophycin]-L-aspartate + L-arginine + ATP → cyanophycin + ADP + phosphate

D-cycloserine biosynthesis :
L-arginine + 2-oxoglutarate + oxygen → Nω-hydroxy-L-arginine + succinate + CO2

ethylene biosynthesis II (microbes) :
L-arginine + 2-oxoglutarate + oxygen → (3S)-3-hydroxy-L-arginine + succinate + CO2

ethylene biosynthesis IV :
2-oxoglutarate + L-arginine + oxygen → succinate + CO2 + guanidinium + (S)-1-pyrroline-5-carboxylate + H2O + H+

L-arginine degradation II (AST pathway) :
L-arginine + succinyl-CoA → N2-succinyl-L-arginine + coenzyme A + H+

L-arginine degradation VIII (arginine oxidase pathway) :
L-arginine + oxygen + H2O → ammonium + 5-guanidino-2-oxo-pentanoate + hydrogen peroxide

L-arginine degradation X (arginine monooxygenase pathway) :
L-arginine + oxygen → 4-guanidinobutyramide + CO2 + H2O

L-citrulline-nitric oxide cycle , nitric oxide biosynthesis (plants) :
2 L-arginine + 3 NADPH + H+ + 4 oxygen → 2 L-citrulline + 2 nitric oxide + 3 NADP+ + 4 H2O

peramine biosynthesis :
(S)-1-pyrroline-5-carboxylate + L-arginine + S-adenosyl-L-methionine + 2 ATP → peramine + S-adenosyl-L-homocysteine + 2 AMP + 2 diphosphate + H2O + 2 H+

pyoverdine I biosynthesis :
L-glutamate + L-tyrosine + L-2,4-diaminobutanoate + 2 L-serine + L-arginine + 2 N5-formyl-N5-hydroxy-L-ornithine + L-lysine + 2 L-threonine → ferribactin + 12 H2O + H+

pyruvate fermentation to opines :
D-octopine + NAD+ + H2O ← L-arginine + pyruvate + NADH + H+

rhizocticin A and B biosynthesis :
ATP + 2-amino-4-hydroxy-5-phosphonopentanoate + L-arginine → ADP + L-arginyl-4-hydroxy-5-phosphonopentanoate + phosphate + H+
ATP + L-2-amino-5-phosphono-3-cis-pentenoate + L-arginine → ADP + rhizocticin A + phosphate + H+

streptomycin biosynthesis :
N1-amidinostreptamine 6-phosphate + L-arginine → streptidine 6-phosphate + L-ornithine
L-arginine + 1-amino-1-deoxy-scyllo-inositol 4-phosphate → 1-guanidino-1-deoxy-scyllo-inositol 4-phosphate + L-ornithine

tRNA charging :
a tRNAarg + L-arginine + ATP + H+ → an L-arginyl-[tRNAarg] + AMP + diphosphate

Not in pathways:
D-nopaline + NADP+ + H2O ← L-arginine + 2-oxoglutarate + NADPH + H+
3 2-oxoglutarate + L-arginine + 3 oxygen + 3 H+ → 2 ethylene + 7 CO2 + succinate + guanidinium + (S)-1-pyrroline-5-carboxylate + 3 H2O
2 L-arginine + 3 NAD(P)H + H+ + 4 oxygen → 2 L-citrulline + 2 nitric oxide + 3 NAD(P)+ + 4 H2O
2 L-arginine + 2 NADPH + 2 H+ + 2 oxygen → 2 Nω-hydroxy-L-arginine + 2 NADP+ + 2 H2O
2 L-arginine + 2 NAD(P)H + 2 H+ + 2 oxygen → 2 Nω-hydroxy-L-arginine + 2 NAD(P)+ + 2 H2O

Reactions known to produce the compound:

D-arginine degradation :
5-guanidino-2-oxo-pentanoate + ammonium + NAD(P)H → L-arginine + NAD(P)+

nopaline degradation :
D-nopaline + an oxidized unknown electron acceptor + H2O → 2-oxoglutarate + L-arginine + an reduced unknown electron acceptor

octopine degradation :
D-octopine + an oxidized unknown electron acceptor + H2O → pyruvate + L-arginine + an reduced unknown electron acceptor

Not in pathways:
Nω-(ADP-D-ribosyl)-L-arginine + H2O → ADP-D-ribose + L-arginine
a [protein] N-terminal L-arginine[periplasmic space] + H2O[periplasmic space] → a protein[periplasmic space] + L-arginine[periplasmic space] + H+[periplasmic space]

dimethylsulfoniopropanoate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

seed germination protein turnover , wound-induced proteolysis I :
a peptide with an N-terminal X-L-proline + H2O → a standard α amino acid + a peptide with an N-terminal L-proline + H+

Not in pathways:
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
a dipetide with L-histidine at the C-terminal + H2O → a standard α amino acid + L-histidine
a dipeptide + H2O → 2 amino acids
β-aspartyl dipeptide + H2O → L-aspartate + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → 2 a standard α amino acid
a peptide + H2O → a standard α amino acid + a peptide
a peptide + H2O → a peptide + a standard α amino acid
a peptide + H2O → a peptide + a standard α amino acid
an oligopeptide + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a standard α amino acid + a peptide
a peptide + H2O → a standard α amino acid + a peptide
a protein + H2O → a standard α amino acid + a peptide

Reactions known to both consume and produce the compound:

3-methylarginine biosynthesis , L-arginine degradation XI :
L-arginine + 2-oxoglutarate ↔ L-glutamate + 5-guanidino-2-oxo-pentanoate

arginine dependent acid resistance , L-arginine degradation III (arginine decarboxylase/agmatinase pathway) , L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway) , putrescine biosynthesis I , putrescine biosynthesis II , spermidine biosynthesis III :
L-arginine + H+ ↔ CO2 + agmatine

L-arginine biosynthesis I (via L-ornithine) , L-arginine biosynthesis II (acetyl cycle) , L-arginine biosynthesis III (via N-acetyl-L-citrulline) , L-arginine biosynthesis IV (archaebacteria) , L-citrulline-nitric oxide cycle :
L-arginino-succinate ↔ L-arginine + fumarate

L-arginine degradation I (arginase pathway) , L-arginine degradation VI (arginase 2 pathway) , L-arginine degradation VII (arginase 3 pathway) , L-citrulline biosynthesis , L-Nδ-acetylornithine biosynthesis :
L-arginine + H2O ↔ urea + L-ornithine

L-arginine degradation IX (arginine:pyruvate transaminase pathway) :
L-arginine + pyruvate ↔ 5-guanidino-2-oxo-pentanoate + L-alanine

L-arginine degradation V (arginine deiminase pathway) , L-proline biosynthesis II (from arginine) :
L-arginine + H2O ↔ ammonium + L-citrulline

L-arginine degradation XII :
L-arginine + a deaminated amino group donor ↔ 5-guanidino-2-oxo-pentanoate + an aminated amino group donor

putrescine biosynthesis IV :
L-arginine + H2O ↔ urea + L-ornithine
L-arginine + H+ ↔ CO2 + agmatine

urea cycle :
L-arginino-succinate ↔ L-arginine + fumarate
L-arginine + H2O ↔ urea + L-ornithine

Not in pathways:
L-arginine ↔ D-arginine
L-arginine + ATP ↔ Nω-phospho-L-arginine + ADP + H+

dimethylsulfoniopropanoate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

L-asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

L-homomethionine biosynthesis :
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

Not in pathways:
L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde

Not in pathways:
L-alanine + a 2-oxo carboxylate ↔ pyruvate + an L-amino acid

sphingolipid recycling and degradation (yeast) :
a dihydroceramide + H2O ↔ sphinganine + a carboxylate

In Reactions of unknown directionality:

Not in pathways:
L-arginine + a standard α amino acid + ATP = a dipeptide with N-terminal L-arginine + ADP + phosphate + H+
L-arginine + L-lysine = L-homoarginine + L-ornithine

Not in pathways:
an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

Not in pathways:
eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a 2-acyl 1-lyso-phosphatidylcholine[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an aldehyde + an electron-transfer quinone + H2O = a carboxylate + an electron-transfer quinol + H+
a triacyl-sn-glycerol + H2O = a 1,2-diacyl-sn-glycerol + a carboxylate + H+
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized unknown electron acceptor + H2O = a carboxylate + an reduced unknown electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an N-acylated aliphatic-L-amino acid + H2O = a carboxylate + an aliphatic L-amino acid
a D-hexose + an acyl phosphate = a D-hexose-phosphate + a carboxylate
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an N-acyl-D-glutamate + H2O = a carboxylate + D-glutamate
an anilide + H2O = aniline + a carboxylate + H+

In Transport reactions:
L-glutamine[out] + L-arginine[in] → L-glutamine[in] + L-arginine[out] ,
L-arginine[out]L-arginine[in] ,
agmatine[cytosol] + L-arginine[periplasmic space] → agmatine[periplasmic space] + L-arginine[cytosol] ,
ATP + L-arginine[periplasmic space] + H2O → ADP + L-arginine[cytosol] + phosphate + H+ ,
a polar amino acid[extracellular space] + ATP + H2O ↔ a polar amino acid[cytosol] + ADP + phosphate

Enzymes activated by L-arginine, sorted by the type of activation, are:

Activator (Allosteric) of: ornithine succinyltransferase [Tricot94]

Activator (Mechanism unknown) of: ornithine carbamoyltransferase, catabolic [Ruepp95] , glutamate dehydrogenase (NAD-dependent) [Bonete96] , ornithine cyclodeaminase [Sans88] , arginase

Enzymes inhibited by L-arginine, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: agmatinase [Satishchandran86] , lysine:cadaverine antiporter [Soksawatmaekhin04]

Inhibitor (Mechanism unknown) of: N-acetylglutamate synthase [Marvil77] , D-octopine synthase [Schrimsher84] , S-methyl-L-methionine decarboxylase [Kocsis00] , acetylglutamate kinase , carbamoyl-phosphate synthetase, arginine specific [Paulus79] , homocitrate synthase [Wulandari02]

This compound has been characterized as an alternative substrate of the following enzymes: L-lysine α-oxidase , guanidinobutyrase , L-lysine monooxygenase , ornaline synthase , ornithine racemase , phenylacetyl-coenzyme A:glycine N-acyltransferase


References

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Kocsis00: Kocsis MG, Hanson AD (2000). "Biochemical evidence for two novel enzymes in the biosynthesis of 3-dimethylsulfoniopropionate in Spartina alterniflora." Plant Physiol 123(3);1153-61. PMID: 10889264

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Marvil77: Marvil DK, Leisinger T (1977). "N-acetylglutamate synthase of Escherichia coli: purification, characterization, and molecular properties." J Biol Chem 1977;252(10);3295-303. PMID: 16890

Paulus79: Paulus TJ, Switzer RL (1979). "Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis." J Bacteriol 1979;137(1);82-91. PMID: 216664

Ruepp95: Ruepp A, Muller HN, Lottspeich F, Soppa J (1995). "Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution." J Bacteriol 1995;177(5);1129-36. PMID: 7868583

Sans88: Sans N, Schindler U, Schroder J (1988). "Ornithine cyclodeaminase from Ti plasmid C58: DNA sequence, enzyme properties and regulation of activity by arginine." Eur J Biochem 173(1);123-30. PMID: 3281832

Satishchandran86: Satishchandran C, Boyle SM (1986). "Purification and properties of agmatine ureohydrolyase, a putrescine biosynthetic enzyme in Escherichia coli." J Bacteriol 1986;165(3);843-8. PMID: 3081491

Schrimsher84: Schrimsher JL, Taylor KB (1984). "Octopine dehydrogenase from Pecten maximus: steady-state mechanism." Biochemistry 23(7);1348-53. PMID: 6722094

Soksawatmaekhin04: Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K (2004). "Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli." Mol Microbiol 51(5);1401-12. PMID: 14982633

Tricot94: Tricot C, Vander Wauven C, Wattiez R, Falmagne P, Stalon V (1994). "Purification and properties of a succinyltransferase from Pseudomonas aeruginosa specific for both arginine and ornithine." Eur J Biochem 224(3);853-61. PMID: 7523119

Wulandari02: Wulandari AP, Miyazaki J, Kobashi N, Nishiyama M, Hoshino T, Yamane H (2002). "Characterization of bacterial homocitrate synthase involved in lysine biosynthesis." FEBS Lett 522(1-3);35-40. PMID: 12095615


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Fri Sep 4, 2015, biocyc13.