Escherichia coli K-12 substr. MG1655 Reaction:

Superclasses: Reactions Classified By Conversion Type Simple Reactions Chemical Reactions
Reactions Classified By Substrate Small-Molecule Reactions

EC Number:

Enzymes and Genes:
sulfate adenylyltransferase Inferred from experiment : cysD , cysN

In Pathway: sulfate activation for sulfonation

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Most BioCyc compounds have been protonated to a reference pH value of 7.3, and some reactions have been computationally balanced for hydrogen by adding free protons. Please see the PGDB Concepts Guide for more information.

Mass balance status: Balanced.

Enzyme Commission Primary Name: sulfate adenylyltransferase

Enzyme Commission Synonyms: adenosine-5'-triphosphate sulfurylase, adenosinetriphosphate sulfurylase, adenylylsulfate pyrophosphorylase, ATP sulfurylase, ATP-sulfurylase, sulfurylase

The first step in the activation of sulfate. The reaction occurs early in the sulfide branch of the cysteine synthesis pathway.

Enzyme Commission Summary:
The human phosphoadenosine-phosphosulfate synthase (PAPS) system is a bifunctional enzyme (fusion product of two catalytic activities). In a first step, sulfate adenylyltransferase catalyses the formation of adenosine 5′-phosphosulfate (APS) from ATP and inorganic sulfate. The second step is catalysed by the adenylylsulfate kinase portion of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase, which involves the formation of PAPS from enzyme-bound APS and ATP. In contrast, in bacteria, yeast, fungi and plants, the formation of PAPS is carried out by two individual polypeptides, sulfate adenylyltransferase (EC and adenylyl-sulfate kinase (EC

Citations: [Hilz55, Venkatachalam98]

Gene-Reaction Schematic: ?

Gene-Reaction Schematic

Relationship Links: BRENDA:EC: , ENZYME:EC: , IUBMB-ExplorEnz:EC:


Hilz55: Hilz H, Lipmann F (1955). "THE ENZYMATIC ACTIVATION OF SULFATE." Proc Natl Acad Sci U S A 41(11);880-90. PMID: 16589765

Venkatachalam98: Venkatachalam KV, Akita H, Strott CA (1998). "Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains." J Biol Chem 273(30);19311-20. PMID: 9668121

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 19.0 on Sat Oct 10, 2015, biocyc13.