Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

Escherichia coli K-12 substr. MG1655 Enzyme: pyruvate oxidase

Gene: poxB Accession Numbers: EG10754 (EcoCyc), b0871, ECK0862

Synonyms: pyruvate:ubiquinone oxidoreductase, pyruvate dehydrogenase (quinone)

Regulation Summary Diagram

Regulation summary diagram for poxB

Subunit composition of pyruvate oxidase = [PoxB]4
         pyruvate oxidase monomer = PoxB

Pyruvate oxidase is a peripheral membrane enzyme that catalyzes the oxidative decarboxylation of pyruvate to form acetate and CO2. The reaction is coupled to the electron transport chain via ubiquinone.

Metabolism of pyruvate by pyruvate oxidase is less efficient than the route via pyruvate dehydrogenase (PDH); however, the pyruvate oxidase route is important for wild-type growth efficiency and responsible for a significant amount of pyruvate metabolism under aerobic conditions [AbdelHamid01, Vemuri05, Nahku10]. PoxB is the main pathway for acetate production in stationary phase [Dittrich05]. Under aerobic phosphate starvation conditions, metabolic flux is diverted from PDH to PoxB, which may decrease oxidative stress [Moreau04, Moreau07]. Modern systems biology approaches have been used to enable a more thorough understanding of the transition to overflow metabolism (excretion of acetate) [Nahku10, Valgepea10] and growth on glycerol as the carbon source [MartinezGomez12].

Activation of the enzyme by phospholipids plays an essential role in vivo [Chang84, Grabau86]. The lipid binding site localizes to the C terminus of PoxB [Hamilton86]. The enzyme is a homotetramer. Multimerization does not appear to be necessary for enzyme activity [Wang91c]; however, the domain that interacts with lipid appears to be formed by contribution from two subunits [Wang91c, Chang95, Chang97]. The presence of the substrate pyruvate and the TPP cofactor causes a conformational change in the C terminus, which goes from a solvent-inaccessible state in which the C termini within the tetramer do not interact with each other to a solvent-accessible state in which C termini are proximal [Chang95, Chang97]. The active site residue V380 is an important determinant of substrate specificity [Chang00].

Mutations of poxB that abolish pyruvate oxidase enzymatic activity were isolated by selecting for lack of growth in the absence of acetate in an aceEF mutant background [Chang83]. Limited proteolytic digestion of PoxB activates the enzyme by removing the C-terminal amphipathic α-peptide that may be responsible for interaction with membrane phospholipids [Recny85]. The poxB3 mutant allele is altered in lipid binding and has 15% of wild type activity [Chang84]. Both the poxB3 (P536S) and poxB4 (A467T) alleles localize to the C-terminal domain [Chang86]. A mutant protein lacking the C-terminal 24 amino acids is active in vitro, but can not be activated by lipids and is not active in vivo [Grabau86]. The study of additional mutants has contributed to a detailed understanding of PoxB interaction with and activation by lipids [Grabau89, Chang97].

Crystal structures of full-length PoxB and the proteolytically activated Δ23 protein have been solved at 2.9 and 2.5 Å resolution, showing that activation is the result of a conformational rearrangement that uncovers the active site [Weidner08, Neumann08].

PoxB is evolutionarily related to the large subunits of E. coli acetohydroxy acid synthases (AHAS) IlvB, IlvG, and IlvI [Grabau86a, Chang88, Green89] and glyoxylate carboligase [Chang93].

Gene expression and/or protein abundance increases at stationary phase [Chang94], in response to the herbicide and acetolactate synthase inhibitor, sulfometuron methyl [Van98a], in response to osmotic stress [Weber06a], and during growth on glycerol compared to growth on glucose as the carbon source [MartinezGomez12]. poxB is part of the σS regulon [Chang94, Van98a, Olvera09]. Gene expression decreases under anaerobic conditions [Chang94]. poxB transcript levels are higher in a K-12 strain than in E. coli B, contributing to higher acetate production in K-12 strains [Phue04, Phue05].

Manipulation of metabolic flux through pyruvate has been successfully used as a strategy in metabolic engineering; e.g. [Lin05, Flores05, Dittrich05a, De07, Zhu08, Tao12].

Review: [Tittmann09]

Citations: [Williams66, Mather85, Barassi86, Chang91, Torchut94 , Torchut95, Marschall95, Hubner98, Tomar03, Causey04, Chang04, Flores04, Lara06, Li06, Wittmann07, Lelong07, Ito08, Sigala09, Ojima09, Baez09a, Kang09, Zhu10a, De10, Gonidakis10, Son11, Sharma12, Nakashima14, Sabido14]

Locations: inner membrane, cytosol

Map Position: [908,554 <- 910,272] (19.58 centisomes, 70°)
Length: 1719 bp / 572 aa

Molecular Weight of Polypeptide: 62.011 kD (from nucleotide sequence), 60.0 kD (experimental) [Grabau84]

Molecular Weight of Multimer: 252 kD (experimental)

pI: 6.22

Unification Links: ASAP:ABE-0002958, CGSC:369, DIP:DIP-36216N, EchoBASE:EB0747, EcoGene:EG10754, EcoliWiki:b0871, ModBase:P07003, OU-Microarray:b0871, PortEco:poxB, PR:PRO_000023575, Pride:P07003, Protein Model Portal:P07003, RefSeq:NP_415392, RegulonDB:EG10754, SMR:P07003, String:511145.b0871, UniProt:P07003

Relationship Links: InterPro:IN-FAMILY:IPR000399, InterPro:IN-FAMILY:IPR011766, InterPro:IN-FAMILY:IPR012000, InterPro:IN-FAMILY:IPR012001, InterPro:IN-FAMILY:IPR029035, InterPro:IN-FAMILY:IPR029061, PDB:Structure:3EY9, PDB:Structure:3EYA, Pfam:IN-FAMILY:PF00205, Pfam:IN-FAMILY:PF02775, Pfam:IN-FAMILY:PF02776, Prosite:IN-FAMILY:PS00187

In Paralogous Gene Group: 143 (4 members), 144 (4 members)

Gene-Reaction Schematic

Gene-Reaction Schematic

Genetic Regulation Schematic

Genetic regulation schematic for poxB

GO Terms:
Biological Process:
Inferred from experimentGO:0006090 - pyruvate metabolic process [Chang83]
Inferred from experimentGO:0042867 - pyruvate catabolic process [AbdelHamid01]
Inferred from experimentGO:0051289 - protein homotetramerization [Stevens80]
Inferred by computational analysisGO:0055114 - oxidation-reduction process [UniProtGOA11a]
Molecular Function:
Inferred from experimentInferred by computational analysisGO:0000287 - magnesium ion binding [GOA01a, Blake82]
Inferred from experimentInferred by computational analysisGO:0008289 - lipid binding [UniProtGOA11a, Hamilton86]
Inferred from experimentInferred by computational analysisGO:0030976 - thiamine pyrophosphate binding [GOA01a, OBrien77]
Inferred from experimentGO:0042802 - identical protein binding [Stevens80]
Inferred from experimentGO:0050660 - flavin adenine dinucleotide binding [Recny82]
Inferred from experimentInferred by computational analysisGO:0052737 - pyruvate dehydrogenase (quinone) activity [GOA01, Chang84]
Inferred by computational analysisGO:0003824 - catalytic activity [GOA01a]
Inferred by computational analysisGO:0016491 - oxidoreductase activity [UniProtGOA11a]
Cellular Component:
Inferred from experimentInferred by computational analysisGO:0005829 - cytosol [DiazMejia09, Ishihama08, Lasserre06]
Inferred by computational analysisGO:0005886 - plasma membrane [UniProtGOA11, UniProtGOA11a]
Inferred by computational analysisGO:0016020 - membrane [UniProtGOA11a]

MultiFun Terms: cell structuremembrane
metabolismcarbon utilizationcarbon compounds
metabolismcentral intermediary metabolismpyruvate oxidation
metabolismenergy production/transportelectron donors

Essentiality data for poxB knockouts:

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB enrichedYes 37 Aerobic 6.95   Yes [Gerdes03, Comment 1]
LB LennoxYes 37 Aerobic 7   Yes [Baba06, Comment 2]
M9 medium with 1% glycerolYes 37 Aerobic 7.2 0.35 Yes [Joyce06, Comment 3]
MOPS medium with 0.4% glucoseYes 37 Aerobic 7.2 0.22 Yes [Baba06, Comment 2]
Yes [Feist07, Comment 4]

Last-Curated 08-Aug-2014 by Keseler I, SRI International

Enzymatic reaction of: pyruvate oxidase

Inferred from experiment

Synonyms: pyruvic oxidase, pyruvate:ubiquinone-8-oxidoreductase, pyruvate:ferricytochrome b1 oxidoreductase

EC Number:

Transport reaction diagram for pyruvate oxidase

Alternative Substrates for pyruvate: 2-oxobutanoate [Chang00]

In Pathways: pyruvate to cytochrome bd terminal oxidase electron transfer, pyruvate to cytochrome bo oxidase electron transfer

An extensive series of detailed biochemical studies was performed with pyruvate oxidase purified from an E. coli W strain [Williams66, Cunningham71, Cunningham71a, Cunningham75, OBrien76, Raj77, OBrien77, Schrock77, Russell77, Russell77a, OBrien79a, Stevens80, OBrien80, Koland82, Koland82a, OBrien82, Blake82, Koland82b, Recny82, Mather82, Recny83, Koland84, Mather85, Carter85, Mather85a, Bertagnolli91, Bertagnolli91a, Bertagnolli93]; some work was done in E. coli B [ShawGoldstein78].

The enzyme has a thiamin pyrophosphate cofactor [OBrien77, OBrien80, Koland82] and a flavin adenine dinucleotide (FAD) cofactor [Koland82b, Mather82]. The FAD and the TPP binding site are within about 20 Å of each other [Koland82b]. The enzyme is activated by neutral lipid [Cunningham75], specifically by palmitic acid [Kiuchi84]. Lipid binding of the enzyme has been characterized [Schrock77, Russell77, Russell77a, OBrien79a, Hamilton86] and is important for enzyme function in vivo [Grabau86]; lipid binding appears to effect changes at the flavin binding site that increase the rate of flavin-mediated electron transfer [Mather85, Mather85a, Bertagnolli91]. Activation depends on the chain length of the fatty acid, with lengths of C12 to C20 generally supporting the greatest activation [Kiuchi84]. Lipid increases the binding of the pyruvate substrate [OBrien80a], and the presence of substrate and thiamin pyrophosphate cofactor (reduced form of the flavoprotein) increase the affinity for phospholipid [Schrock80]. Pyruvate oxidase uses ubiquinone-8 [Carter85, Koland84, Cunningham75] (and can use ubiquinone-6 [Cunningham75]) as the electron acceptor, whereas it does not use menaquinone-6 [Cunningham75] or menaquinone-8 [Cunningham75, Koland84]. The enzyme can be activated by protease treatment [Raj77, Russell77a, Recny83, Recny85, Bertagnolli91a]. The enzyme activity has been characterized in detail [Houghton79, Koland84, Mather85a, Bertagnolli91, Marchal01].

In vitro systems have been developed [Koland84, Torchut94, Torchut95]. An inhibitory monoclonal antibody has been generated [Barassi86].

Citations: [Houghton73, Schrock80a, Mather82a, Zhang87]

Cofactors or Prosthetic Groups: FAD [Comment 5, Koland82b, Mather82], thiamine diphosphate [Chang82, OBrien77, OBrien80, Koland82], Mg2+ [Comment 6, Chang82, Blake82]

Activators (Allosteric): a long-chain fatty acid [Kiuchi84], a phospholipid [Cunningham75, Chang84], diacetyl [Koland82], palmitate [Kiuchi84] Inhibitors (Competitive): diphosphate [Comment 7], methyl-acetylphosphonate [OBrien80a], phosphonoacetaldehyde [OBrien80a] Inhibitors (Irreversible): N-ethylmaleimide [Koland82a], methylmethanethiosulfonate [Koland82a], phenylglyoxal [Koland82]Kinetic Parameters:
Substrate Km (μM) kcat (sec-1) Vmax (µmol mg-1 min-1) Citations
pyruvate 200.0 [Neumann08]
pyruvate 20000.0 447.0 [Chang00]
2-oxobutanoate 8000.0 26.0 [Chang00]

Enzymatic reaction of: acetoin synthesis (pyruvate oxidase)

Inferred from experiment

pyruvate + acetaldehyde + H+ → acetoin + CO2

The direction shown, i.e. which substrates are on the left and right sides, is in accordance with the direction of enzyme catalysis.

The reaction is physiologically favored in the direction shown.

FAD appears to play a structural role with respect to this activity. This acetoin-producing activity is not stimulated by amphiphilic activators of the oxidative acetate-producing activity [Bertagnolli93].

Cofactors or Prosthetic Groups: FAD [Bertagnolli93]

Sequence Features

Protein sequence of pyruvate oxidase monomer with features indicated

Feature Class Location Citations Comment
Sequence-Conflict 364 -> 365
Inferred by curator[Grabau89, UniProt15]
UniProt: (in Ref. 5; AAB59101/AAB59102).
Sequence-Conflict 414 -> 416
Inferred by curator[Grabau89, UniProt15]
UniProt: (in Ref. 5; AAB59101/ AAB59102).
Mutagenesis-Variant 533
Inferred from experiment[Grabau89]
UniProt: In poxB11.
Mutagenesis-Variant 549 -> 572
Inferred from experiment[Grabau89]
UniProt: In poxB6.
Active-Peptide 550 -> 572
Author statement[UniProt15]
UniProt: Alpha-peptide.
Mutagenesis-Variant 553
Inferred from experiment[Grabau89]
UniProt: In poxB14.
Mutagenesis-Variant 560
Inferred from experiment[Grabau89]
UniProt: In poxB15; normal activity.
Mutagenesis-Variant 564
Inferred from experiment[Grabau89]
UniProt: In poxB16; loss of activity.
Mutagenesis-Variant 564 -> 572
Inferred from experiment[Grabau89]
UniProt: In poxB7.
Mutagenesis-Variant 570 -> 572
Inferred from experiment[Grabau89]
UniProt: In poxB8.
Mutagenesis-Variant 572
Inferred from experiment[Grabau89]
UniProt: In poxB10; reduced activity; may interact less with membranes.

Sequence Pfam Features

Protein sequence of pyruvate oxidase monomer with features indicated

Feature Class Location Citations Comment
Pfam PF02776 4 -> 170
Inferred by computational analysis[Finn14]
TPP_enzyme_N : Thiamine pyrophosphate enzyme, N-terminal TPP binding domain
Pfam PF00205 192 -> 319
Inferred by computational analysis[Finn14]
TPP_enzyme_M : Thiamine pyrophosphate enzyme, central domain
Pfam PF02775 379 -> 525
Inferred by computational analysis[Finn14]
TPP_enzyme_C : Thiamine pyrophosphate enzyme, C-terminal TPP binding domain

Gene Local Context (not to scale -- see Genome Browser for correct scale)

Gene local context diagram

Transcription Units

Transcription-unit diagram

Transcription-unit diagram

Transcription-unit diagram


10/20/97 Gene b0871 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10754; confirmed by SwissProt match.


AbdelHamid01: Abdel-Hamid AM, Attwood MM, Guest JR (2001). "Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli." Microbiology 147(Pt 6);1483-98. PMID: 11390679

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Baez09a: Baez A, Flores N, Bolivar F, Ramirez OT (2009). "Metabolic and transcriptional response of recombinant Escherichia coli to elevated dissolved carbon dioxide concentrations." Biotechnol Bioeng 104(1);102-10. PMID: 19452501

Barassi86: Barassi CA, Kranz RG, Gennis RB (1986). "Characterization of monoclonal antibodies directed against pyruvate oxidase from Escherichia coli: modulation of antibody-induced inhibition by enzyme conformation." Biochem Biophys Res Commun 137(2);884-91. PMID: 3524564

Bertagnolli91: Bertagnolli BL, Hager LP (1991). "Activation of Escherichia coli pyruvate oxidase enhances the oxidation of hydroxyethylthiamin pyrophosphate." J Biol Chem 266(16);10168-73. PMID: 2037573

Bertagnolli91a: Bertagnolli BL, Hager LP (1991). "Minimum requirements for protease activation of flavin pyruvate oxidase." Biochemistry 30(33);8131-7. PMID: 1868088

Bertagnolli93: Bertagnolli BL, Hager LP (1993). "Role of flavin in acetoin production by two bacterial pyruvate oxidases." Arch Biochem Biophys 300(1);364-71. PMID: 8424670

Blake82: Blake R, O'Brien TA, Gennis RB, Hager LP (1982). "Role of the divalent metal cation in the pyruvate oxidase reaction." J Biol Chem 1982;257(16);9605-11. PMID: 6286628

Carter85: Carter K, Gennis RB (1985). "Reconstitution of the Ubiquinone-dependent pyruvate oxidase system of Escherichia coli with the cytochrome o terminal oxidase complex." J Biol Chem 260(20);10986-90. PMID: 3897227

Causey04: Causey TB, Shanmugam KT, Yomano LP, Ingram LO (2004). "Engineering Escherichia coli for efficient conversion of glucose to pyruvate." Proc Natl Acad Sci U S A 101(8);2235-40. PMID: 14982993

Chang00: Chang YY, Cronan JE (2000). "Conversion of Escherichia coli pyruvate oxidase to an 'alpha-ketobutyrate oxidase'." Biochem J 352 Pt 3;717-24. PMID: 11104678

Chang04: Chang TF, Ruan KC (2004). "Exploration of pressure-induced dissociation of pyruvate oxidase." Cell Mol Biol (Noisy-le-grand) 50(4);323-8. PMID: 15529741

Chang82: Chang YY, Cronan JE (1982). "Mapping nonselectable genes of Escherichia coli by using transposon Tn10: location of a gene affecting pyruvate oxidase." J Bacteriol 151(3);1279-89. PMID: 6286595

Chang83: Chang YY, Cronan JE (1983). "Genetic and biochemical analyses of Escherichia coli strains having a mutation in the structural gene (poxB) for pyruvate oxidase." J Bacteriol 154(2);756-62. PMID: 6341362

Chang84: Chang YY, Cronan JE (1984). "An Escherichia coli mutant deficient in pyruvate oxidase activity due to altered phospholipid activation of the enzyme." Proc Natl Acad Sci U S A 81(14);4348-52. PMID: 16593486

Chang86: Chang YY, Cronan JE (1986). "Molecular cloning, DNA sequencing, and enzymatic analyses of two Escherichia coli pyruvate oxidase mutants defective in activation by lipids." J Bacteriol 167(1);312-8. PMID: 3522547

Chang88: Chang YY, Cronan JE (1988). "Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway." J Bacteriol 170(9);3937-45. PMID: 3045082

Chang91: Chang YY, Cronan JE, Li SJ, Reed K, Vanden Boom T, Wang AY (1991). "Locations of the lip, poxB, and ilvBN genes on the physical map of Escherichia coli." J Bacteriol 173(17);5258-9. PMID: 1832150

Chang93: Chang YY, Wang AY, Cronan JE (1993). "Molecular cloning, DNA sequencing, and biochemical analyses of Escherichia coli glyoxylate carboligase. An enzyme of the acetohydroxy acid synthase-pyruvate oxidase family." J Biol Chem 1993;268(6);3911-9. PMID: 8440684

Chang94: Chang YY, Wang AY, Cronan JE (1994). "Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene." Mol Microbiol 1994;11(6);1019-28. PMID: 8022274

Chang95: Chang YY, Cronan JE (1995). "Detection by site-specific disulfide cross-linking of a conformational change in binding of Escherichia coli pyruvate oxidase to lipid bilayers." J Biol Chem 270(14);7896-901. PMID: 7713884

Chang97: Chang YY, Cronan JE (1997). "Sulfhydryl chemistry detects three conformations of the lipid binding region of Escherichia coli pyruvate oxidase." Biochemistry 36(39);11564-73. PMID: 9305946

Cunningham71: Cunningham CC, Hager LP (1971). "Crystalline pyruvate oxidase from Escherichia coli. II. Activation by phospholipids." J Biol Chem 246(6);1575-82. PMID: 4323230

Cunningham71a: Cunningham CC, Hager LP (1971). "Crystalline pyruvate oxidase from Escherichia coli. 3. Phospholipid as an allosteric effector for the enzyme." J Biol Chem 1971;246(6);1583-9. PMID: 4926543

Cunningham75: Cunningham CC, Hager LP (1975). "Reactivation of the lipid-depleted pyruvate oxidase system from Escherichia coli with cell envelope neutral lipids." J Biol Chem 250(18);7139-46. PMID: 1100621

De07: De Mey M, Lequeux GJ, Beauprez JJ, Maertens J, Van Horen E, Soetaert WK, Vanrolleghem PA, Vandamme EJ (2007). "Comparison of different strategies to reduce acetate formation in Escherichia coli." Biotechnol Prog 23(5);1053-63. PMID: 17715942

De10: De Mey M, Lequeux GJ, Beauprez JJ, Maertens J, Waegeman HJ, Van Bogaert IN, Foulquie-Moreno MR, Charlier D, Soetaert WK, Vanrolleghem PA, Vandamme EJ (2010). "Transient metabolic modeling of Escherichia coli MG1655 and MG1655 DeltaackA-pta, DeltapoxB Deltapppc ppc-p37 for recombinant beta-galactosidase production." J Ind Microbiol Biotechnol 37(8);793-803. PMID: 20440535

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Dittrich05: Dittrich CR, Bennett GN, San KY (2005). "Characterization of the acetate-producing pathways in Escherichia coli." Biotechnol Prog 21(4);1062-7. PMID: 16080684

Dittrich05a: Dittrich CR, Vadali RV, Bennett GN, San KY (2005). "Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate." Biotechnol Prog 21(2);627-31. PMID: 15801810

Feist07: Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007). "A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information." Mol Syst Biol 3;121. PMID: 17593909

Finn14: Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014). "Pfam: the protein families database." Nucleic Acids Res 42(Database issue);D222-30. PMID: 24288371

Flores04: Flores N, de Anda R, Flores S, Escalante A, Hernandez G, Martinez A, Ramirez OT, Gosset G, Bolivar F (2004). "Role of pyruvate oxidase in Escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system." J Mol Microbiol Biotechnol 8(4);209-21. PMID: 16179798

Flores05: Flores N, Flores S, Escalante A, de Anda R, Leal L, Malpica R, Georgellis D, Gosset G, Bolivar F (2005). "Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system." Metab Eng 7(2);70-87. PMID: 15781417

Gerdes03: Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003). "Experimental determination and system level analysis of essential genes in Escherichia coli MG1655." J Bacteriol 185(19);5673-84. PMID: 13129938

GOA01: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Gonidakis10: Gonidakis S, Finkel SE, Longo VD (2010). "Genome-wide screen identifies Escherichia coli TCA-cycle-related mutants with extended chronological lifespan dependent on acetate metabolism and the hypoxia-inducible transcription factor ArcA." Aging Cell 9(5);868-81. PMID: 20707865

Grabau84: Grabau C, Cronan JE (1984). "Molecular cloning of the gene (poxB) encoding the pyruvate oxidase of Escherichia coli, a lipid-activated enzyme." J Bacteriol 160(3);1088-92. PMID: 6209262

Grabau86: Grabau C, Cronan JE (1986). "In vivo function of Escherichia coli pyruvate oxidase specifically requires a functional lipid binding site." Biochemistry 25(13);3748-51. PMID: 3527254

Grabau86a: Grabau C, Cronan JE (1986). "Nucleotide sequence and deduced amino acid sequence of Escherichia coli pyruvate oxidase, a lipid-activated flavoprotein." Nucleic Acids Res 14(13);5449-60. PMID: 3016647

Grabau89: Grabau C, Chang YY, Cronan JE (1989). "Lipid binding by Escherichia coli pyruvate oxidase is disrupted by small alterations of the carboxyl-terminal region." J Biol Chem 264(21);12510-9. PMID: 2663858

Green89: Green JB (1989). "Pyruvate decarboxylase is like acetolactate synthase (ILV2) and not like the pyruvate dehydrogenase E1 subunit." FEBS Lett 1989;246(1-2);1-5. PMID: 2651151

Hamilton86: Hamilton SE, Recny M, Hager LP (1986). "Identification of the high-affinity lipid binding site in Escherichia coli pyruvate oxidase." Biochemistry 25(25);8178-83. PMID: 3545288

Houghton73: Houghton RL, Swoboda BE (1973). "Kinetics of the mechanism of action of flavin pyruvate oxidase from an acetate requiring mutant of Escherichia coli." FEBS Lett 30(3);277-80. PMID: 4573435

Houghton79: Houghton RL (1979). "The effect of temperature, urea and N-ethylmaleimide on pyruvate oxidase (EC activity." Int J Biochem 10(3);205-8. PMID: 372032

Hubner98: Hubner G, Tittmann K, Killenberg-Jabs M, Schaffner J, Spinka M, Neef H, Kern D, Kern G, Schneider G, Wikner C, Ghisla S (1998). "Activation of thiamin diphosphate in enzymes." Biochim Biophys Acta 1385(2);221-8. PMID: 9655909

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Ito08: Ito A, May T, Kawata K, Okabe S (2008). "Significance of rpoS during maturation of Escherichia coli biofilms." Biotechnol Bioeng 99(6);1462-71. PMID: 17979199

Joyce06: Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006). "Experimental and computational assessment of conditionally essential genes in Escherichia coli." J Bacteriol 188(23);8259-71. PMID: 17012394

Kang09: Kang Z, Geng Y, Xia Yz, Kang J, Qi Q (2009). "Engineering Escherichia coli for an efficient aerobic fermentation platform." J Biotechnol 144(1);58-63. PMID: 19563847

Kiuchi84: Kiuchi K, Hager LP (1984). "Reconstitution of the lipid-depleted pyruvate oxidase system of Escherichia coli: the palmitic acid effect." Arch Biochem Biophys 233(2);776-84. PMID: 6385860

Koland82: Koland JG, O'Brien TA, Gennis RB (1982). "Role of arginine in the binding of thiamin pyrophosphate to Escherichia coli pyruvate oxidase." Biochemistry 21(11);2656-600. PMID: 7046791

Koland82a: Koland JG, Gennis RB (1982). "Identification of an active site cysteine residue in Escherichia coli pyruvate oxidase." J Biol Chem 257(11);6023-7. PMID: 7042705

Koland82b: Koland JG, Gennis RB (1982). "Proximity of reactive cysteine residue and flavin in Escherichia coli pyruvate oxidase as estimated by fluorescence energy transfer." Biochemistry 21(18);4438-42. PMID: 6751388

Koland84: Koland JG, Miller MJ, Gennis RB (1984). "Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase." Biochemistry 23(3);445-53. PMID: 6367818

Lara06: Lara AR, Leal L, Flores N, Gosset G, Bolivar F, Ramirez OT (2006). "Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system." Biotechnol Bioeng 93(2);372-85. PMID: 16187334

Lasserre06: Lasserre JP, Beyne E, Pyndiah S, Lapaillerie D, Claverol S, Bonneu M (2006). "A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis." Electrophoresis 27(16);3306-21. PMID: 16858726

Lelong07: Lelong C, Aguiluz K, Luche S, Kuhn L, Garin J, Rabilloud T, Geiselmann J (2007). "The Crl-RpoS regulon of Escherichia coli." Mol Cell Proteomics 6(4);648-59. PMID: 17224607

Li06: Li M, Ho PY, Yao S, Shimizu K (2006). "Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments." J Biotechnol 122(2);254-66. PMID: 16310273

Lin05: Lin H, Bennett GN, San KY (2005). "Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate." Biotechnol Bioeng 89(2);148-56. PMID: 15543598

Marchal01: Marchal D, Pantigny J, Laval JM, Moiroux J, Bourdillon C (2001). "Rate constants in two dimensions of electron transfer between pyruvate oxidase, a membrane enzyme, and ubiquinone (coenzyme Q8), its water-insoluble electron carrier." Biochemistry 40(5);1248-56. PMID: 11170450

Marschall95: Marschall C, Hengge-Aronis R (1995). "Regulatory characteristics and promoter analysis of csiE, a stationary phase-inducible gene under the control of sigma S and the cAMP-CRP complex in Escherichia coli." Mol Microbiol 18(1);175-84. PMID: 8596457

MartinezGomez12: Martinez-Gomez K, Flores N, Castaneda HM, Martinez-Batallar G, Hernandez-Chavez G, Ramirez OT, Gosset G, Encarnacion S, Bolivar F (2012). "New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol." Microb Cell Fact 11;46. PMID: 22513097

Mather82: Mather M, Schopfer LM, Massey V, Gennis RB (1982). "Studies of the flavin adenine dinucleotide binding region in Escherichia coli pyruvate oxidase." J Biol Chem 1982;257(21);12887-92. PMID: 6752143

Mather82a: Mather M, Blake R, Koland J, Schrock H, Russell P, O'Brien T, Hager LP, Gennis RB, O'Leary M (1982). "Escherichia coli pyruvate oxidase: interaction of a peripheral membrane protein with lipids." Biophys J 37(1);87-8. PMID: 19431517

Mather85: Mather MW, Gennis RB (1985). "Spectroscopic studies of pyruvate oxidase flavoprotein from Escherichia coli trapped in the lipid-activated form by cross-linking." J Biol Chem 260(19);10395-7. PMID: 3928620

Mather85a: Mather MW, Gennis RB (1985). "Kinetic studies of the lipid-activated pyruvate oxidase flavoprotein of Escherichia coli." J Biol Chem 260(30);16148-55. PMID: 3905808

Moreau04: Moreau PL (2004). "Diversion of the metabolic flux from pyruvate dehydrogenase to pyruvate oxidase decreases oxidative stress during glucose metabolism in nongrowing Escherichia coli cells incubated under aerobic, phosphate starvation conditions." J Bacteriol 186(21);7364-8. PMID: 15489448

Moreau07: Moreau PL (2007). "The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids." J Bacteriol 189(6);2249-61. PMID: 17209032

Nahku10: Nahku R, Valgepea K, Lahtvee PJ, Erm S, Abner K, Adamberg K, Vilu R (2010). "Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures." J Biotechnol 145(1);60-5. PMID: 19861135

Nakashima14: Nakashima N, Ohno S, Yoshikawa K, Shimizu H, Tamura T (2014). "A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli." Appl Environ Microbiol 80(2);564-73. PMID: 24212579

Neumann08: Neumann P, Weidner A, Pech A, Stubbs MT, Tittmann K (2008). "Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli." Proc Natl Acad Sci U S A 105(45);17390-5. PMID: 18988747

OBrien76: O'Brien TA, Schrock HL, Russell P, Blake R, Gennis RB (1976). "Preparation of Escherichia coli pyruvate oxidase utilizing a thiamine pyrophosphate affinity column." Biochim Biophys Acta 452(1);13-29. PMID: 791368

OBrien77: O'Brien TA, Blake R, Gennis RB (1977). "Regulation by lipids of cofactor binding to a peripheral membrane enzyme: binding of thiamin pyrophosphate to pyruvate oxidase." Biochemistry 16(14);3105-9. PMID: 329866

OBrien79a: O'Brien TA, Gennis RB (1979). "Studies on the interaction between Escherichia coli pyruvate oxidase and a detergent activator by utilization of the fluorescence probe bis(8-p-toluidino-1-naphthalenesulfonate)." Biochemistry 18(5);804-9. PMID: 369607

OBrien80: O'Brien TA, Gennis RB (1980). "Studies of the thiamin pyrophosphate binding site of Escherichia coli pyruvate oxidase. Evidence for an essential tryptophan residue." J Biol Chem 255(8);3302-7. PMID: 6988424

OBrien80a: O'Brien TA, Kluger R, Pike DC, Gennis RB (1980). "Phosphonate analogues of pyruvate. Probes of substrate binding to pyruvate oxidase and other thiamin pyrophosphate-dependent decarboxylases." Biochim Biophys Acta 613(1);10-7. PMID: 6990987

OBrien82: O'Brien TA, Shelton E, Mather M, Gennis RB (1982). "Conformational studies of Escherichia coli pyruvate oxidase." Biochim Biophys Acta 1982;705(3);321-9. PMID: 6751398

Ojima09: Ojima Y, Komaki M, Nishioka M, Iwatani S, Tsujimoto N, Taya M (2009). "Introduction of a stress-responsive gene, yggG, enhances the yield of L-phenylalanine with decreased acetic acid production in a recombinant Escherichia coli." Biotechnol Lett 31(4);525-30. PMID: 19125225

Olvera09: Olvera L, Mendoza-Vargas A, Flores N, Olvera M, Sigala JC, Gosset G, Morett E, Bolivar F (2009). "Transcription analysis of central metabolism genes in Escherichia coli. Possible roles of sigma38 in their expression, as a response to carbon limitation." PLoS One 4(10);e7466. PMID: 19838295

Phue04: Phue JN, Shiloach J (2004). "Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109)." J Biotechnol 109(1-2);21-30. PMID: 15063611

Phue05: Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J (2005). "Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses." Biotechnol Bioeng 90(7);805-20. PMID: 15806547

Raj77: Raj T, Russell P, Flygare WH, Gennis RB (1977). "Quasi-elastic light scattering studies on pyruvate oxidase." Biochim Biophys Acta 481(1);42-9. PMID: 321031

Recny82: Recny MA, Hager LP (1982). "Reconstitution of native Escherichia coli pyruvate oxidase from apoenzyme monomers and FAD." J Biol Chem 257(21);12878-86. PMID: 6752142

Recny83: Recny MA, Hager LP (1983). "Isolation and characterization of the protease-activated form of pyruvate oxidase. Evidence for a conformational change in the environment of the flavin prosthetic group." J Biol Chem 258(8);5189-95. PMID: 6339508

Recny85: Recny MA, Grabau C, Cronan JE, Hager LP (1985). "Characterization of the alpha-peptide released upon protease activation of pyruvate oxidase." J Biol Chem 260(26);14287-91. PMID: 3902830

Russell77: Russell P, Hager LP, Gennis RB (1977). "Characterization of the proteolytic activation of pyruvate oxidase. Control by specific ligands and by the flavin oxidation-reduction state." J Biol Chem 252(21);7877-82. PMID: 334770

Russell77a: Russell P, Schrock HL, Gennis RB (1977). "Lipid activation and protease activation of pyruvate oxidase. Evidence suggesting a common site of interaction on the protein." J Biol Chem 252(21);7883-7. PMID: 334771

Sabido14: Sabido A, Sigala JC, Hernandez-Chavez G, Flores N, Gosset G, Bolivar F (2014). "Physiological and transcriptional characterization of Escherichia coli strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized." Biotechnol Bioeng 111(6);1150-60. PMID: 24375081

Schrock77: Schrock HL, Gennis RB (1977). "High affinity lipid binding sites on the peripheral membrane enzyme pyruvate oxidase. Specific ligand effects on detergent binding." J Biol Chem 252(17);5990-5. PMID: 330521

Schrock80: Schrock HL, Gennis RB (1980). "Specific ligand enhancement of the affinity of E. coli pyruvate oxidase for dipalmitoyl phosphatidylcholine." Biochim Biophys Acta 614(1);215-20. PMID: 6994817

Schrock80a: Schrock HL, Gennis RB (1980). "The binding of a fluorescent activator 2-(N-decyl)aminonaphthalene-6-sulfonic acid to pyruvate oxidase." Biochim Biophys Acta 615(1);10-8. PMID: 7000189

Sharma12: Sharma P, Hellingwerf KJ, de Mattos MJ, Bekker M (2012). "Uncoupling of substrate-level phosphorylation in Escherichia coli during glucose-limited growth." Appl Environ Microbiol 78(19);6908-13. PMID: 22843529

ShawGoldstein78: Shaw-Goldstein LA, Gennis RB, Walsh C (1978). "Identification, localization, and function of the thiamin pyrophosphate and flavin adenine dinucleotide dependent pyruvate oxidase in isolated membrane vesicles of Escherichia coli B." Biochemistry 17(26);5605-13. PMID: 365232

Sigala09: Sigala JC, Flores S, Flores N, Aguilar C, de Anda R, Gosset G, Bolivar F (2009). "Acetate metabolism in Escherichia coli strains lacking phosphoenolpyruvate: carbohydrate phosphotransferase system; evidence of carbon recycling strategies and futile cycles." J Mol Microbiol Biotechnol 16(3-4);224-35. PMID: 18679018

Son11: Son YJ, Phue JN, Trinh LB, Lee SJ, Shiloach J (2011). "The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth." Microb Cell Fact 10;52. PMID: 21718532

Stevens80: Stevens DJ, Gennis RB (1980). "Studies on the quaternary structure of Escherichia coli pyruvate oxidase." J Biol Chem 255(2);379-83. PMID: 6985891

Tao12: Tao Y, Cheng Q, Kopatsis AD (2012). "Metabolic engineering for acetate control in large scale fermentation." Methods Mol Biol 834;283-303. PMID: 22144366

Tittmann09: Tittmann K (2009). "Reaction mechanisms of thiamin diphosphate enzymes: redox reactions." FEBS J 276(9);2454-68. PMID: 19476487

Tomar03: Tomar A, Eiteman MA, Altman E (2003). "The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli." Appl Microbiol Biotechnol 62(1);76-82. PMID: 12835924

Torchut94: Torchut E, Bourdillon C, Laval JM (1994). "Reconstitution of functional electron transfer between membrane biological elements in a two-dimensional lipidic structure at the electrode interface." Biosens Bioelectron 9(9-10);719-23. PMID: 7695848

Torchut95: Torchut E, Bourdillon C, Laval JM (1995). "Reconstitution of a functional electron transfer in a biomimetic structure, including an electrode interface, phospholipid and ubiquinone molecules, and a membrane enzyme." Ann N Y Acad Sci 750;112-5. PMID: 7785840

UniProt15: UniProt Consortium (2015). "UniProt version 2015-08 released on 2015-07-22." Database.

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

Valgepea10: Valgepea K, Adamberg K, Nahku R, Lahtvee PJ, Arike L, Vilu R (2010). "Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase." BMC Syst Biol 4(1);166. PMID: 21122111

Van98a: Van Dyk TK, Ayers BL, Morgan RW, Larossa RA (1998). "Constricted flux through the branched-chain amino acid biosynthetic enzyme acetolactate synthase triggers elevated expression of genes regulated by rpoS and internal acidification." J Bacteriol 180(4);785-92. PMID: 9473030

Vemuri05: Vemuri GN, Minning TA, Altman E, Eiteman MA (2005). "Physiological response of central metabolism in Escherichia coli to deletion of pyruvate oxidase and introduction of heterologous pyruvate carboxylase." Biotechnol Bioeng 90(1);64-76. PMID: 15736164

Wang91c: Wang AY, Chang YY, Cronan JE (1991). "Role of the tetrameric structure of Escherichia coli pyruvate oxidase in enzyme activation and lipid binding." J Biol Chem 266(17);10959-66. PMID: 2040613

Weber06a: Weber A, Kogl SA, Jung K (2006). "Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli." J Bacteriol 188(20);7165-75. PMID: 17015655

Weidner08: Weidner A, Neumann P, Wille G, Stubbs MT, Tittmann K (2008). "Crystallization and preliminary X-ray diffraction analysis of full-length and proteolytically activated pyruvate oxidase from Escherichia coli." Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 3);179-81. PMID: 18323602

Williams66: Williams FR, Hager LP (1966). "Crystalline flavin pyruvate oxidase from Escherichia coli. I. Isolation and properties of the flavoprotein." Arch Biochem Biophys 1966;116(1);168-76. PMID: 5336022

Wittmann07: Wittmann C, Weber J, Betiku E, Kromer J, Bohm D, Rinas U (2007). "Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli." J Biotechnol 132(4);375-84. PMID: 17689798

Zhang87: Zhang TF, Hager LP (1987). "A single-step large-scale purification of pyruvate oxidase." Arch Biochem Biophys 257(2);485-7. PMID: 3310893

Zhu08: Zhu Y, Eiteman MA, Altman R, Altman E (2008). "High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain." Appl Environ Microbiol 74(21);6649-55. PMID: 18806005

Zhu10a: Zhu Y, Eiteman MA, Lee SA, Altman E (2010). "Conversion of glycerol to pyruvate by Escherichia coli using acetate- and acetate/glucose-limited fed-batch processes." J Ind Microbiol Biotechnol 37(3);307-12. PMID: 20012884

Other References Related to Gene Regulation

Martin99: Martin RG, Gillette WK, Rhee S, Rosner JL (1999). "Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter." Mol Microbiol 1999;34(3);431-41. PMID: 10564485

Wise96: Wise A, Brems R, Ramakrishnan V, Villarejo M (1996). "Sequences in the -35 region of Escherichia coli rpoS-dependent genes promote transcription by E sigma S." J Bacteriol 1996;178(10);2785-93. PMID: 8631665

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by Pathway Tools version 19.5 (software by SRI International) on Mon May 2, 2016, biocyc14.