Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Polypeptide: ring 1,2-phenylacetyl-CoA epoxidase, structural subunit



Gene: paaC Accession Numbers: G6711 (EcoCyc), b1390, ECK1387

Synonyms: ydbP

Regulation Summary Diagram: ?

Component of: ring 1,2-phenylacetyl-CoA epoxidase (summary available)

Summary:
PaaC is the structural β subunit of the catalytic core of the enzyme [Grishin11].

PaaC: "phenylacetic acid degradation" [Ferrandez98]

Locations: cytosol

Map Position: [1,453,188 -> 1,453,934] (31.32 centisomes)
Length: 747 bp / 248 aa

Molecular Weight of Polypeptide: 27.877 kD (from nucleotide sequence)

Unification Links: ASAP:ABE-0004653 , EchoBASE:EB3500 , EcoGene:EG13737 , EcoliWiki:b1390 , ModBase:P76079 , OU-Microarray:b1390 , PortEco:paaC , PR:PRO_000023477 , Pride:P76079 , Protein Model Portal:P76079 , RefSeq:NP_415908 , RegulonDB:G6711 , SMR:P76079 , String:511145.b1390 , UniProt:P76079

Relationship Links: InterPro:IN-FAMILY:IPR007814 , InterPro:IN-FAMILY:IPR009078 , InterPro:IN-FAMILY:IPR011882 , InterPro:IN-FAMILY:IPR012347 , PDB:Structure:1OTK , PDB:Structure:3PVR , PDB:Structure:3PVT , PDB:Structure:3PVY , PDB:Structure:3PW1 , PDB:Structure:3PW8 , PDB:Structure:3PWQ , Pfam:IN-FAMILY:PF05138

Gene-Reaction Schematic: ?

Genetic Regulation Schematic: ?

GO Terms:

Biological Process: GO:0010124 - phenylacetate catabolic process Inferred from experiment Inferred by computational analysis [UniProtGOA12, Ferrandez98]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Rajagopala14]
Cellular Component: GO:0005829 - cytosol Inferred from experiment Inferred by computational analysis [DiazMejia09, Zhang07]

MultiFun Terms: metabolism carbon utilization carbon compounds

Essentiality data for paaC knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox Yes 37 Aerobic 7   Yes [Baba06, Comment 1]
M9 medium with 1% glycerol Yes 37 Aerobic 7.2 0.35 Yes [Joyce06, Comment 2]
MOPS medium with 0.4% glucose Yes 37 Aerobic 7.2 0.22 Yes [Baba06, Comment 1]

Subunit of: ring 1,2-phenylacetyl-CoA epoxidase

Subunit composition of ring 1,2-phenylacetyl-CoA epoxidase = [PaaE][PaaA][PaaC][PaaB]
         ring 1,2-phenylacetyl-CoA epoxidase, reductase subunit = PaaE (summary available)
         ring 1,2-phenylacetyl-CoA epoxidase, monooxygenase subunit = PaaA (summary available)
         ring 1,2-phenylacetyl-CoA epoxidase, structural subunit = PaaC (summary available)
         ring 1,2-phenylacetyl-CoA epoxidase subunit = PaaB (summary available)

Summary:
The ring 1,2-phenylacetyl-CoA epoxidase, comprised of the PaaA, PaaB, PaaC, and PaaE polypeptides, catalyzes the second step in the aerobic degradation of phenylacetate [Grishin11].

Stable subcomplexes composed of PaaABC, PaaAC and PaaBC can be purified, but only the combination of the PaaABC complex together with PaaE has full activity [Grishin11]. Crystal structures of the PaaAC subcomplex alone and together with a variety of ligands have been solved [Grishin10, Grishin11].

GO Terms:

Biological Process: GO:0010124 - phenylacetate catabolic process Inferred from experiment [Grishin11]
Molecular Function: GO:0016709 - oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen Inferred from experiment [Grishin11]

Credits:
Last-Curated ? 25-Jan-2011 by Keseler I , SRI International


Enzymatic reaction of: ring 1,2-phenylacetyl-CoA epoxidase

Synonyms: phenylacetyl-CoA monooxygenase

EC Number: 1.14.13.149

phenylacetyl-CoA + NADPH + oxygen + H+ <=> 2-(1,2-epoxy-1,2-dihydrophenyl)acetyl-CoA + NADP+ + H2O

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the direction of enzyme catalysis.

The reaction is physiologically favored in the direction shown.

In Pathways: superpathway of phenylethylamine degradation , phenylacetate degradation I (aerobic)

Cofactors or Prosthetic Groups: [2Fe-2S] iron-sulfur cluster [Grishin11], FAD [Grishin11]


Sequence Features

Feature Class Location Citations Comment
Protein-Segment 76 -> 79
[UniProt12a]
UniProt: Substrate; Sequence Annotation Type: region of interest; Non-Experimental Qualifier: by similarity.
Extrinsic-Sequence-Variant 160
[UniProt10]
Alternate sequence: N → D; UniProt: (in strain: W);
Protein-Segment 177 -> 179
[UniProt12a]
UniProt: Substrate; Sequence Annotation Type: region of interest; Non-Experimental Qualifier: by similarity.


Gene Local Context (not to scale): ?

Transcription Units:

Notes:

History:
Markus Krummenacker on Tue Oct 14, 1997:
Gene object created from Blattner lab Genbank (v. M52) entry.


References

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Ferrandez98: Ferrandez A, Minambres B, Garcia B, Olivera ER, Luengo JM, Garcia JL, Diaz E (1998). "Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway." J Biol Chem 1998;273(40);25974-86. PMID: 9748275

Grishin10: Grishin AM, Ajamian E, Zhang L, Cygler M (2010). "Crystallization and preliminary X-ray analysis of PaaAC, the main component of the hydroxylase of the Escherichia coli phenylacetyl-coenzyme A oxygenase complex." Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 9);1045-9. PMID: 20823522

Grishin11: Grishin AM, Ajamian E, Tao L, Zhang L, Menard R, Cygler M (2011). "Structural and functional studies of the Escherichia coli phenylacetyl-CoA monooxygenase complex." J Biol Chem 286(12);10735-43. PMID: 21247899

Joyce06: Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006). "Experimental and computational assessment of conditionally essential genes in Escherichia coli." J Bacteriol 188(23);8259-71. PMID: 17012394

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Teufel10: Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G (2010). "Bacterial phenylalanine and phenylacetate catabolic pathway revealed." Proc Natl Acad Sci U S A 107(32):14390-5. PMID: 20660314

UniProt10: UniProt Consortium (2010). "UniProt version 2010-11 released on 2010-11-02 00:00:00." Database.

UniProt12a: UniProt Consortium (2012). "UniProt version 2012-09 released on 2012-09-12 00:00:00." Database.

UniProtGOA12: UniProt-GOA (2012). "Gene Ontology annotation based on UniPathway vocabulary mapping."

Zhang07: Zhang N, Chen R, Young N, Wishart D, Winter P, Weiner JH, Li L (2007). "Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS." Proteomics 7(4);484-93. PMID: 17309111

Other References Related to Gene Regulation

Beisel12: Beisel CL, Updegrove TB, Janson BJ, Storz G (2012). "Multiple factors dictate target selection by Hfq-binding small RNAs." EMBO J 31(8);1961-74. PMID: 22388518

Ferrandez00: Ferrandez A, Garcia JL, Diaz E (2000). "Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli." J Biol Chem 275(16);12214-22. PMID: 10766858

Kim04a: Kim HS, Kang TS, Hyun JS, Kang HS (2004). "Regulation of penicillin G acylase gene expression in Escherichia coli by repressor PaaX and the cAMP-cAMP receptor protein complex." J Biol Chem 279(32);33253-62. PMID: 15159386


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Tue Nov 25, 2014, biocyc13.