twitter

Escherichia coli K-12 substr. MG1655 Polypeptide: 30S ribosomal subunit protein S10



Gene: rpsJ Accession Numbers: EG10909 (EcoCyc), b3321, ECK3308

Synonyms: nusE

Regulation Summary Diagram

Regulation summary diagram for rpsJ

Component of:
NusB-S10 complex (extended summary available)
30S ribosomal subunit (summary available)
ribosome (summary available)

Summary:
The S10 protein (NusE) is a component of the 30S subunit of the ribosome. From within its location in the ribosome, S10 plays a role in linking transcription and translation; in a separate complex with NusB, it plays a role in regulating transcription antitermination.

S10 can be crosslinked to tRNA in the ribosomal P site [Riehl82] and may contact 16S rRNA in two separate domains [Powers88]. Mutations in S10 confer resistance to the antibiotic tigecycline [Beabout15].

As part of the ribosome, S10 also interacts with several non-ribosomal proteins. The NusG protein interacts with S10 and may thereby physically link transcription and translation [Burmann10]. Interaction of the NTD of RfaH with its ops DNA target releases its CTD, which then switches to a conformation that can interact with S10 and activate translation [Burmann12].

Outside of the ribosome, S10 is involved in the regulation of transcription termination [Das84, Warren84, Das85]. S10 forms a heterodimer with NusB [Mason92] which can bind to the boxA sequence of rrn operons [Nodwell93, Luttgen02]. Detailed analysis of the assembly pathway for the boxA-containing core antitermination complex has been performed. S10 was shown to bind RNA non-specifically and increases the affinity of NusB for boxA RNA [Greive05]. Because overexpression of S10 in a strain lacking NusB rescues transcription antitermination, S10 is the critical component of the NusB-S10 complex, while NusB appears to serve as a loading factor [Luo08]. An S10 mutant that lacks the extended ribosome binding loop (aa 46-67, S10Δloop) retains its regulatory function in transcription termination, but can not perform the essential function of S10, i.e. likely its role in the ribosome/translation. The interactions of S10 with the ribosome or with NusB are mutually exclusive [Luo08]. Within the NusB-S10 complex, S10 can interact with RpoB, the β subunit of RNA polymerase [Mason91, Drogemuller15].

S10's extraribosomal function was first discovered in the context of bacteriophage λ biology. The nusE71 mutation in the rpsJ gene was shown to affect regulation of transcription termination by the bacteriophage λ antiterminator N [Friedman81]. The nusE71 allele is a point mutation, changing a single amino acid, Ala86, to Asp. It is the only rpsJ allele known to have a Nus- phenotype [Court95]. The nusE71 mutation may be specific for λ antitermination; it appears to have no effect on boxA-mediated increase in the rate of transcription of rrn operons [Zellars99].

NusE: "N utilization substance E"

Reviews: [Squires00, Weisberg08, Roberts10]

Citations: [Das08, Sullivan92]

Gene Citations: [Zurawski85]

Locations: cytosol, ribosome

Map Position: [3,450,981 <- 3,451,292] (74.38 centisomes, 268°)
Length: 312 bp / 103 aa

Molecular Weight of Polypeptide: 11.736 kD (from nucleotide sequence), 12.0 kD (experimental) [Mason92]

Unification Links: ASAP:ABE-0010862, CGSC:222, DIP:DIP-35797N, EchoBASE:EB0902, EcoGene:EG10909, EcoliWiki:b3321, Mint:MINT-1283940, ModBase:P0A7R5, OU-Microarray:b3321, PortEco:rpsJ, PR:PRO_000023863, Pride:P0A7R5, Protein Model Portal:P0A7R5, RefSeq:NP_417780, RegulonDB:EG10909, SMR:P0A7R5, String:511145.b3321, UniProt:P0A7R5

Relationship Links: InterPro:IN-FAMILY:IPR001848, InterPro:IN-FAMILY:IPR018268, InterPro:IN-FAMILY:IPR027486, Panther:IN-FAMILY:PTHR11700, PDB:Structure:1M5G, PDB:Structure:2KVQ, PDB:Structure:2YKR, PDB:Structure:3D3B, PDB:Structure:3D3C, PDB:Structure:3IMQ, PDB:Structure:3J9Y, PDB:Structure:3W1Y, PDB:Structure:4A2I, PDB:Structure:4ADV, PDB:Structure:4U1U, PDB:Structure:4U1V, PDB:Structure:4U20, PDB:Structure:4U24, PDB:Structure:4U25, PDB:Structure:4U26, PDB:Structure:4U27, PDB:Structure:4V6K, PDB:Structure:4V6L, PDB:Structure:4V6M, PDB:Structure:4V6N, PDB:Structure:4V6O, PDB:Structure:4V6P, PDB:Structure:4V6Q, PDB:Structure:4V6R, PDB:Structure:4V6S, PDB:Structure:4V6T, PDB:Structure:4V6V, PDB:Structure:4V6Y, PDB:Structure:4V6Z, PDB:Structure:4V9C, PDB:Structure:4V9D, PDB:Structure:4V9O, PDB:Structure:4V9P, PDB:Structure:4V47, PDB:Structure:4V48, PDB:Structure:4V4H, PDB:Structure:4V4Q, PDB:Structure:4V4V, PDB:Structure:4V4W, PDB:Structure:4V50, PDB:Structure:4V52, PDB:Structure:4V53, PDB:Structure:4V54, PDB:Structure:4V55, PDB:Structure:4V56, PDB:Structure:4V57, PDB:Structure:4V5B, PDB:Structure:4V5H, PDB:Structure:4V5Y, PDB:Structure:4V64, PDB:Structure:4V65, PDB:Structure:4V66, PDB:Structure:4V69, PDB:Structure:4V6C, PDB:Structure:4V6D, PDB:Structure:4V6E, PDB:Structure:4V70, PDB:Structure:4V71, PDB:Structure:4V72, PDB:Structure:4V73, PDB:Structure:4V74, PDB:Structure:4V75, PDB:Structure:4V76, PDB:Structure:4V77, PDB:Structure:4V78, PDB:Structure:4V79, PDB:Structure:4V7A, PDB:Structure:4V7B, PDB:Structure:4V7C, PDB:Structure:4V7D, PDB:Structure:4V7I, PDB:Structure:4V7S, PDB:Structure:4V7T, PDB:Structure:4V7U, PDB:Structure:4V7V, PDB:Structure:4V85, PDB:Structure:4V89, PDB:Structure:4WF1, PDB:Structure:4WWW, PDB:Structure:4YBB, PDB:Structure:5AFI, Pfam:IN-FAMILY:PF00338, Prints:IN-FAMILY:PR00971, Prosite:IN-FAMILY:PS00361

Gene-Reaction Schematic

Gene-Reaction Schematic

Genetic Regulation Schematic

Genetic regulation schematic for rpsJ


GO Terms:
Biological Process:
Inferred from experimentGO:0031564 - transcription antitermination [Luo08]
Inferred by computational analysisGO:0006412 - translation [GOA06, GOA01a]
Molecular Function:
Inferred from experimentGO:0001072 - transcription antitermination factor activity, RNA binding [Luo08]
Inferred from experimentGO:0005515 - protein binding [Drogemuller15, Burmann12, Burmann10, Zheng11, Arifuzzaman06, Mason92, Butland05]
Inferred by computational analysisGO:0000049 - tRNA binding [GOA06]
Inferred by computational analysisGO:0003723 - RNA binding [GOA01a]
Inferred by computational analysisGO:0003735 - structural constituent of ribosome [GOA01a, Gaudet10]
Cellular Component:
Inferred from experimentInferred by computational analysisGO:0005829 - cytosol [DiazMejia09, Ishihama08]
Inferred from experimentGO:0022627 - cytosolic small ribosomal subunit [Hindennach71a, Hardy69]
Inferred by computational analysisGO:0005622 - intracellular [GOA01a]
Inferred by computational analysisGO:0005840 - ribosome [UniProtGOA11a, GOA01a]
Inferred by computational analysisGO:0030529 - ribonucleoprotein complex [UniProtGOA11a]

MultiFun Terms: cell structureribosomes
information transferprotein relatedribosomal proteins
information transferprotein relatedtranslation
regulationtype of regulationtranscriptional level

Essentiality data for rpsJ knockouts:

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB LennoxNo 37 Aerobic 7   No [Baba06, Comment 1]

Credits:
Last-Curated 30-Jul-2015 by Keseler I, SRI International


Subunit of: NusB-S10 complex

Synonyms: NusB-NusE complex

Subunit composition of NusB-S10 complex = [RpsJ][NusB]
         30S ribosomal subunit protein S10 = RpsJ (extended summary available)
         transcription antitermination protein NusB = NusB (extended summary available)

Summary:
The NusB-S10(NusE) complex is involved in modulating transcription. It was first discovered for its role in antitermination of phage λ early transcription [Friedman81] and was later shown to be required for antitermination in rRNA operons and, surprisingly, transcription termination mediated by the Nun protein of phage HK022.

NusB and S10 form a heterodimer [Mason92] that specifically binds transcripts containing the BoxA sequence [Nodwell93, Luttgen02]. Detailed analysis of the assembly pathway for the BoxA-containing core antitermination complex has been performed [Greive05]. S10 was shown to bind RNA non-specifically and increases the affinity of NusB for boxA RNA [Greive05].

An S10 mutant that lacks the extended ribosome binding loop (aa 46-67, S10Δloop) retains its regulatory function in transcription termination, but can not perform the essential function of S10, i.e. likely its role in the ribosome/translation [Luo08]. A crystal structure of the NusB-S10Δloop complex has been solved [Luo08]. UV-induced protein-RNA crosslinking of NusB and S10 shows a continuous BoxA binding surface involving both proteins and suggests that NusB stabilizes a BoxA-binding conformation of S10 [Luo08]. Overexpression of S10 in a strain lacking NusB rescues transcription antitermination, indicating that S10 is the critical component of the NusB-S10 complex, while NusB appears to recruit S10 to the BoxA binding site [Luo08].

Reviews: [Weisberg08, Burmann11, Santangelo11]

Citations: [Mogridge98, Das08, Burmann10a]

Molecular Weight: 27.0 kD (experimental) [Luttgen02]

Relationship Links: PDB:Structure:3D3B, PDB:Structure:3D3C


GO Terms:
Molecular Function:
Inferred from experimentGO:0001068 - transcription regulatory region RNA binding [Luttgen02]
Inferred from experimentGO:0003723 - RNA binding [Luttgen02]

Credits:
Created 02-Jul-2010 by Keseler I, SRI International


Subunit of: 30S ribosomal subunit

Inferred from experiment

Synonyms: ribosome, small subunit

Subunit composition of 30S ribosomal subunit = [RrsA][RpsA][RpsB][RpsC][RpsD][RpsE][RpsF][RpsG][RpsH][RpsI][RpsJ][RpsK][RpsL][RpsM][RpsN][RpsO][RpsP][RpsQ][RpsR][RpsS][RpsT][RpsU][Sra]
         16S ribosomal RNA (rrsA) = RrsA (extended summary available)
         30S ribosomal subunit protein S1 = RpsA (extended summary available)
         30S ribosomal subunit protein S2 = RpsB (summary available)
         30S ribosomal subunit protein S3 = RpsC (summary available)
         30S ribosomal subunit protein S4 = RpsD (extended summary available)
         30S ribosomal subunit protein S5 = RpsE (extended summary available)
         30S ribosomal subunit protein S6 = RpsF (extended summary available)
         30S ribosomal subunit protein S7 = RpsG (extended summary available)
         30S ribosomal subunit protein S8 = RpsH (extended summary available)
         30S ribosomal subunit protein S9 = RpsI (extended summary available)
         30S ribosomal subunit protein S10 = RpsJ (extended summary available)
         30S ribosomal subunit protein S11 = RpsK (summary available)
         30S ribosomal subunit protein S12 = RpsL (extended summary available)
         30S ribosomal subunit protein S13 = RpsM (extended summary available)
         30S ribosomal subunit protein S14 = RpsN (summary available)
         30S ribosomal subunit protein S15 = RpsO (extended summary available)
         30S ribosomal subunit protein S16 = RpsP (summary available)
         30S ribosomal subunit protein S17 = RpsQ (summary available)
         30S ribosomal subunit protein S18 = RpsR (extended summary available)
         30S ribosomal subunit protein S19 = RpsS (summary available)
         30S ribosomal subunit protein S20 = RpsT (extended summary available)
         30S ribosomal subunit protein S21 = RpsU (summary available)
         30S ribosomal subunit protein S22 = Sra (summary available)

Component of: ribosome (summary available)

Summary:
Assembly of the 30S ribosomal subunit has been studied in real time. Initial assembly is linked to the formation of structured 16S rRNA regions, while later steps involve induced fit between ribosomal proteins and the rRNA [Adilakshmi08]. Discovery single-particle profiling was used to visualize assembly of the 30S ribosomal subunit by indentifying and following changes among 14 subunit assembly intermediates over time [Mulder10]. The kinetically favored assembly pathway of the 30S preinitiation complex has been determined [Milon12].

The function of the ribosomal P site has been reviewed [Noller05].

Relationship Links: PDB:Structure:1P6G, PDB:Structure:1P87, PDB:Structure:2AVY

Enzymes activated by 30S ribosomal subunit, sorted by the type of activation, are:

Activator (Mechanism unknown) of: GTPase [Daigle04, Himeno04]

Credits:
Created 28-Mar-2006 by Keseler I, SRI International


Subunit of: ribosome

Subunit composition of ribosome = [(RrsA)(RpsA)(RpsB)(RpsC)(RpsD)(RpsE)(RpsF)(RpsG)(RpsH)(RpsI)(RpsJ)(RpsK)(RpsL)(RpsM)(RpsN)(RpsO)(RpsP)(RpsQ)(RpsR)(RpsS)(RpsT)(RpsU)(Sra)][(RrlA)(RrfA)(RplA)(RplB)(RplC)(RplD)(RplE)(RplF)([RplJ][(RplL)2]2)(RplI)(RplK)(RplM)(RplN)(RplO)(RplP)(RplQ)(RplR)(RplS)(RplT)(RplU)(RplV)(RplW)(RplX)(RplY)(RpmA)(RpmB)(RpmC)(RpmD)(RpmE)(RpmF)(RpmG)(RpmH)(RpmI)(RpmJ)]
         30S ribosomal subunit = (RrsA)(RpsA)(RpsB)(RpsC)(RpsD)(RpsE)(RpsF)(RpsG)(RpsH)(RpsI)(RpsJ)(RpsK)(RpsL)(RpsM)(RpsN)(RpsO)(RpsP)(RpsQ)(RpsR)(RpsS)(RpsT)(RpsU)(Sra) (summary available)
                 16S ribosomal RNA (rrsA) = RrsA (extended summary available)
                 30S ribosomal subunit protein S1 = RpsA (extended summary available)
                 30S ribosomal subunit protein S2 = RpsB (summary available)
                 30S ribosomal subunit protein S3 = RpsC (summary available)
                 30S ribosomal subunit protein S4 = RpsD (extended summary available)
                 30S ribosomal subunit protein S5 = RpsE (extended summary available)
                 30S ribosomal subunit protein S6 = RpsF (extended summary available)
                 30S ribosomal subunit protein S7 = RpsG (extended summary available)
                 30S ribosomal subunit protein S8 = RpsH (extended summary available)
                 30S ribosomal subunit protein S9 = RpsI (extended summary available)
                 30S ribosomal subunit protein S10 = RpsJ (extended summary available)
                 30S ribosomal subunit protein S11 = RpsK (summary available)
                 30S ribosomal subunit protein S12 = RpsL (extended summary available)
                 30S ribosomal subunit protein S13 = RpsM (extended summary available)
                 30S ribosomal subunit protein S14 = RpsN (summary available)
                 30S ribosomal subunit protein S15 = RpsO (extended summary available)
                 30S ribosomal subunit protein S16 = RpsP (summary available)
                 30S ribosomal subunit protein S17 = RpsQ (summary available)
                 30S ribosomal subunit protein S18 = RpsR (extended summary available)
                 30S ribosomal subunit protein S19 = RpsS (summary available)
                 30S ribosomal subunit protein S20 = RpsT (extended summary available)
                 30S ribosomal subunit protein S21 = RpsU (summary available)
                 30S ribosomal subunit protein S22 = Sra (summary available)
         50S ribosomal subunit = (RrlA)(RrfA)(RplA)(RplB)(RplC)(RplD)(RplE)(RplF)([RplJ][(RplL)2]2)(RplI)(RplK)(RplM)(RplN)(RplO)(RplP)(RplQ)(RplR)(RplS)(RplT)(RplU)(RplV)(RplW)(RplX)(RplY)(RpmA)(RpmB)(RpmC)(RpmD)(RpmE)(RpmF)(RpmG)(RpmH)(RpmI)(RpmJ)
                 23S ribosomal RNA (rrlA) = RrlA (extended summary available)
                 5S ribosomal RNA (rrfA) = RrfA (extended summary available)
                 50S ribosomal subunit protein L1 = RplA (extended summary available)
                 50S ribosomal subunit protein L2 = RplB (summary available)
                 50S ribosomal subunit protein L3 = RplC (summary available)
                 50S ribosomal subunit protein L4 = RplD (extended summary available)
                 50S ribosomal subunit protein L5 = RplE (extended summary available)
                 50S ribosomal subunit protein L6 = RplF (summary available)
                 50S ribosomal protein complex L8 = (RplJ)([RplL]2)2 (summary available)
                         50S ribosomal subunit protein L10 = RplJ (extended summary available)
                         50S ribosomal subunit protein L7/L12 dimer = (RplL)2
                                 50S ribosomal subunit protein L12 = RplL
                 50S ribosomal subunit protein L9 = RplI (extended summary available)
                 50S ribosomal subunit protein L11 = RplK (extended summary available)
                 50S ribosomal subunit protein L13 = RplM (extended summary available)
                 50S ribosomal subunit protein L14 = RplN (extended summary available)
                 50S ribosomal subunit protein L15 = RplO (summary available)
                 50S ribosomal subunit protein L16 = RplP (extended summary available)
                 50S ribosomal subunit protein L17 = RplQ (summary available)
                 50S ribosomal subunit protein L18 = RplR (extended summary available)
                 50S ribosomal subunit protein L19 = RplS (extended summary available)
                 50S ribosomal subunit protein L20 = RplT (extended summary available)
                 50S ribosomal subunit protein L21 = RplU (summary available)
                 50S ribosomal subunit protein L22 = RplV (extended summary available)
                 50S ribosomal subunit protein L23 = RplW (extended summary available)
                 50S ribosomal subunit protein L24 = RplX (summary available)
                 50S ribosomal subunit protein L25 = RplY (extended summary available)
                 50S ribosomal subunit protein L27 = RpmA (extended summary available)
                 50S ribosomal subunit protein L28 = RpmB (summary available)
                 50S ribosomal subunit protein L29 = RpmC (summary available)
                 50S ribosomal subunit protein L30 = RpmD (summary available)
                 50S ribosomal subunit protein L31 = RpmE (summary available)
                 50S ribosomal subunit protein L32 = RpmF (summary available)
                 50S ribosomal subunit protein L33 = RpmG (summary available)
                 50S ribosomal subunit protein L34 = RpmH (summary available)
                 50S ribosomal subunit protein L35 = RpmI (summary available)
                 50S ribosomal subunit protein L36 = RpmJ (extended summary available)

Summary:
The ribosome is a complex machinery that translates the genetic code.

A crystal structure of the E. coli ribosome has been determined at 3.5 Å resolution [Schuwirth05]. Additional crystal structures of the ribosome with tRNA bound in two functionally distinct states reveal how a ratchet-like motion of the small and large subunits contributes to translocation, termination of translation, and ribosome recycling [Zhang09, Dunkle11].

Approximately eight molecules of Zn2+ are bound to the ribosome; therefore, it appears that a large fraction of intracellular Zn2+ is ribosome-associated [Hensley11].

Selected reviews: [Ramakrishnan02, Yonath05, Ogle05, Kaczanowska07]

Citations: [Kuhlenkoetter11, Goldman15]

Relationship Links: PDB:Structure:3R8N, PDB:Structure:3R8O, PDB:Structure:3R8S, PDB:Structure:3R8T

Enzymes activated by ribosome, sorted by the type of activation, are:

Activator (Mechanism unknown) of: ATPase [Becker12]

Credits:
Created 15-Jun-2006 by Keseler I, SRI International


Sequence Features

Protein sequence of 30S ribosomal subunit protein S10 with features indicated

Feature Class Location Citations Comment
Pfam PF00338 7 -> 100
Inferred by computational analysis[Finn14]
Ribosomal_S10 : Ribosomal protein S10p/S20e


Gene Local Context (not to scale -- see Genome Browser for correct scale)

Gene local context diagram

Transcription Unit

Transcription-unit diagram

Notes:

History:
10/20/97 Gene b3321 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10909; confirmed by SwissProt match.


References

Adilakshmi08: Adilakshmi T, Bellur DL, Woodson SA (2008). "Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly." Nature 455(7217);1268-72. PMID: 18784650

Arifuzzaman06: Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A, Tsuzuki K, Nakamura S, Altaf-Ul-Amin M, Oshima T, Baba T, Yamamoto N, Kawamura T, Ioka-Nakamichi T, Kitagawa M, Tomita M, Kanaya S, Wada C, Mori H (2006). "Large-scale identification of protein-protein interaction of Escherichia coli K-12." Genome Res 16(5);686-91. PMID: 16606699

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Beabout15: Beabout K, Hammerstrom TG, Perez AM, Magalhaes BF, Prater AG, Clements TP, Arias CA, Saxer G, Shamoo Y (2015). "The ribosomal S10 protein is a general target for decreased tigecycline susceptibility." Antimicrob Agents Chemother. PMID: 26124155

Becker12: Becker M, Gzyl KE, Altamirano AM, Vuong A, Urban K, Wieden HJ (2012). "The 70S ribosome modulates the ATPase activity of Escherichia coli YchF." RNA Biol 9(10);1288-301. PMID: 22995830

Burmann10: Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL, Gottesman ME, Rosch P (2010). "A NusE:NusG complex links transcription and translation." Science 328(5977);501-4. PMID: 20413501

Burmann10a: Burmann BM, Luo X, Rosch P, Wahl MC, Gottesman ME (2010). "Fine tuning of the E. coli NusB:NusE complex affinity to BoxA RNA is required for processive antitermination." Nucleic Acids Res 38(1);314-26. PMID: 19854945

Burmann11: Burmann BM, Rosch P (2011). "The role of E. coli Nus-factors in transcription regulation and transcription:translation coupling: From structure to mechanism." Transcription 2(3);130-134. PMID: 21922055

Burmann12: Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rosch P (2012). "An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor." Cell 150(2);291-303. PMID: 22817892

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Court95: Court DL, Patterson TA, Baker T, Costantino N, Mao X, Friedman DI (1995). "Structural and functional analyses of the transcription-translation proteins NusB and NusE." J Bacteriol 177(9);2589-91. PMID: 7730297

Daigle04: Daigle DM, Brown ED (2004). "Studies of the interaction of Escherichia coli YjeQ with the ribosome in vitro." J Bacteriol 186(5);1381-7. PMID: 14973029

Das08: Das R, Loss S, Li J, Waugh DS, Tarasov S, Wingfield PT, Byrd RA, Altieri AS (2008). "Structural biophysics of the NusB:NusE antitermination complex." J Mol Biol 376(3);705-20. PMID: 18177898

Das84: Das A, Wolska K (1984). "Transcription antitermination in vitro by lambda N gene product: requirement for a phage nut site and the products of host nusA, nusB, and nusE genes." Cell 38(1);165-73. PMID: 6088061

Das85: Das A, Ghosh B, Barik S, Wolska K (1985). "Evidence that ribosomal protein S10 itself is a cellular component necessary for transcription antitermination by phage lambda N protein." Proc Natl Acad Sci U S A 82(12);4070-4. PMID: 2987961

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Drogemuller15: Drogemuller J, Strauß M, Schweimer K, Wohrl BM, Knauer SH, Rosch P (2015). "Exploring RNA polymerase regulation by NMR spectroscopy." Sci Rep 5;10825. PMID: 26043358

Dunkle11: Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J, Richardson JS, Blanchard SC, Cate JH (2011). "Structures of the bacterial ribosome in classical and hybrid states of tRNA binding." Science 332(6032);981-4. PMID: 21596992

Finn14: Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014). "Pfam: the protein families database." Nucleic Acids Res 42(Database issue);D222-30. PMID: 24288371

Friedman81: Friedman DI, Schauer AT, Baumann MR, Baron LS, Adhya SL (1981). "Evidence that ribosomal protein S10 participates in control of transcription termination." Proc Natl Acad Sci U S A 78(2);1115-8. PMID: 6453343

Gaudet10: Gaudet P, Livstone M, Thomas P (2010). "Annotation inferences using phylogenetic trees." PMID: 19578431

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA06: GOA, SIB (2006). "Electronic Gene Ontology annotations created by transferring manual GO annotations between orthologous microbial proteins."

Goldman15: Goldman DH, Kaiser CM, Milin A, Righini M, Tinoco I, Bustamante C (2015). "Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo." Science 348(6233);457-60. PMID: 25908824

Greive05: Greive SJ, Lins AF, von Hippel PH (2005). "Assembly of an RNA-protein complex. Binding of NusB and NusE (S10) proteins to boxA RNA nucleates the formation of the antitermination complex involved in controlling rRNA transcription in Escherichia coli." J Biol Chem 280(43);36397-408. PMID: 16109710

Hardy69: Hardy SJ, Kurland CG, Voynow P, Mora G (1969). "The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins." Biochemistry 8(7);2897-905. PMID: 4897206

Hensley11: Hensley MP, Tierney DL, Crowder MW (2011). "Zn(II) binding to Escherichia coli 70S ribosomes." Biochemistry 50(46);9937-9. PMID: 22026583

Himeno04: Himeno H, Hanawa-Suetsugu K, Kimura T, Takagi K, Sugiyama W, Shirata S, Mikami T, Odagiri F, Osanai Y, Watanabe D, Goto S, Kalachnyuk L, Ushida C, Muto A (2004). "A novel GTPase activated by the small subunit of ribosome." Nucleic Acids Res 32(17);5303-9. PMID: 15466596

Hindennach71a: Hindennach I, Stoffler G, Wittmann HG (1971). "Ribosomal proteins. Isolation of the proteins from 30S ribosomal subunits of Escherichia coli." Eur J Biochem 23(1);7-11. PMID: 4942549

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Kaczanowska07: Kaczanowska M, Ryden-Aulin M (2007). "Ribosome biogenesis and the translation process in Escherichia coli." Microbiol Mol Biol Rev 71(3);477-94. PMID: 17804668

Kuhlenkoetter11: Kuhlenkoetter S, Wintermeyer W, Rodnina MV (2011). "Different substrate-dependent transition states in the active site of the ribosome." Nature 476(7360);351-4. PMID: 21804565

Luo08: Luo X, Hsiao HH, Bubunenko M, Weber G, Court DL, Gottesman ME, Urlaub H, Wahl MC (2008). "Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex." Mol Cell 32(6);791-802. PMID: 19111659

Luttgen02: Luttgen H, Robelek R, Muhlberger R, Diercks T, Schuster SC, Kohler P, Kessler H, Bacher A, Richter G (2002). "Transcriptional regulation by antitermination. Interaction of RNA with NusB protein and NusB/NusE protein complex of Escherichia coli." J Mol Biol 316(4);875-85. PMID: 11884128

Mason91: Mason SW, Greenblatt J (1991). "Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10." Genes Dev 5(8);1504-12. PMID: 1831176

Mason92: Mason SW, Li J, Greenblatt J (1992). "Direct interaction between two Escherichia coli transcription antitermination factors, NusB and ribosomal protein S10." J Mol Biol 223(1);55-66. PMID: 1731086

Milon12: Milon P, Maracci C, Filonava L, Gualerzi CO, Rodnina MV (2012). "Real-time assembly landscape of bacterial 30S translation initiation complex." Nat Struct Mol Biol 19(6);609-15. PMID: 22562136

Mogridge98: Mogridge J, Mah TF, Greenblatt J (1998). "Involvement of boxA nucleotides in the formation of a stable ribonucleoprotein complex containing the bacteriophage lambda N protein." J Biol Chem 273(7);4143-8. PMID: 9461609

Mulder10: Mulder AM, Yoshioka C, Beck AH, Bunner AE, Milligan RA, Potter CS, Carragher B, Williamson JR (2010). "Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit." Science 330(6004);673-7. PMID: 21030658

Nodwell93: Nodwell JR, Greenblatt J (1993). "Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10." Cell 72(2);261-8. PMID: 7678781

Noller05: Noller HF, Hoang L, Fredrick K (2005). "The 30S ribosomal P site: a function of 16S rRNA." FEBS Lett 579(4);855-8. PMID: 15680962

Ogle05: Ogle JM, Ramakrishnan V (2005). "Structural insights into translational fidelity." Annu Rev Biochem 74;129-77. PMID: 15952884

Olins81: Olins PO, Nomura M (1981). "Regulation of the S10 ribosomal protein operon in E. coli: nucleotide sequence at the start of the operon." Cell 1981;26(2 Pt 2);205-11. PMID: 7037196

Powers88: Powers T, Stern S, Changchien LM, Noller HF (1988). "Probing the assembly of the 3' major domain of 16 S rRNA. Interactions involving ribosomal proteins S2, S3, S10, S13 and S14." J Mol Biol 201(4);697-716. PMID: 2459390

Ramakrishnan02: Ramakrishnan V (2002). "Ribosome structure and the mechanism of translation." Cell 108(4);557-72. PMID: 11909526

Riehl82: Riehl N, Remy P, Ebel JP, Ehresmann B (1982). "Crosslinking of N-acetyl-phenylalanyl [s4U]tRNAPhe to protein S10 in the ribosomal P site." Eur J Biochem 128(2-3);427-33. PMID: 6759118

Roberts10: Roberts JW (2010). "Molecular biology. Syntheses that stay together." Science 328(5977);436-7. PMID: 20413480

Santangelo11: Santangelo TJ, Artsimovitch I (2011). "Termination and antitermination: RNA polymerase runs a stop sign." Nat Rev Microbiol 9(5);319-29. PMID: 21478900

Schuwirth05: Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005). "Structures of the bacterial ribosome at 3.5 A resolution." Science 310(5749);827-34. PMID: 16272117

Squires00: Squires CL, Zaporojets D (2000). "Proteins shared by the transcription and translation machines." Annu Rev Microbiol 54;775-98. PMID: 11018144

Sullivan92: Sullivan SL, Ward DF, Gottesman ME (1992). "Effect of Escherichia coli nusG function on lambda N-mediated transcription antitermination." J Bacteriol 174(4);1339-44. PMID: 1531224

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

Warren84: Warren F, Das A (1984). "Formation of termination-resistant transcription complex at phage lambda nut locus: effects of altered translation and a ribosomal mutation." Proc Natl Acad Sci U S A 81(12);3612-6. PMID: 6233610

Weisberg08: Weisberg RA (2008). "Transcription by moonlight: structural basis of an extraribosomal activity of ribosomal protein S10." Mol Cell 32(6);747-8. PMID: 19111651

Yonath05: Yonath A (2005). "Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation." Annu Rev Biochem 74;649-79. PMID: 16180279

Zellars99: Zellars M, Squires CL (1999). "Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG." Mol Microbiol 32(6);1296-304. PMID: 10383769

Zhang09: Zhang W, Dunkle JA, Cate JH (2009). "Structures of the ribosome in intermediate states of ratcheting." Science 325(5943);1014-7. PMID: 19696352

Zheng11: Zheng C, Yang L, Hoopmann MR, Eng JK, Tang X, Weisbrod CR, Bruce JE (2011). "Cross-linking measurements of in vivo protein complex topologies." Mol Cell Proteomics 10(10);M110.006841. PMID: 21697552

Zurawski85: Zurawski G, Zurawski SM (1985). "Structure of the Escherichia coli S10 ribosomal protein operon." Nucleic Acids Res 1985;13(12);4521-6. PMID: 3892488

Other References Related to Gene Regulation

Cerretti83: Cerretti DP, Dean D, Davis GR, Bedwell DM, Nomura M (1983). "The spc ribosomal protein operon of Escherichia coli: sequence and cotranscription of the ribosomal protein genes and a protein export gene." Nucleic Acids Res 1983;11(9);2599-616. PMID: 6222285

Lemke11: Lemke JJ, Sanchez-Vazquez P, Burgos HL, Hedberg G, Ross W, Gourse RL (2011). "Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA." Proc Natl Acad Sci U S A 108(14);5712-7. PMID: 21402902

Salmon03: Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP (2003). "Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR." J Biol Chem 278(32);29837-55. PMID: 12754220

Salmon05: Salmon KA, Hung SP, Steffen NR, Krupp R, Baldi P, Hatfield GW, Gunsalus RP (2005). "Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA." J Biol Chem 280(15);15084-96. PMID: 15699038

Sha95: Sha Y, Lindahl L, Zengel JM (1995). "Role of NusA in L4-mediated attenuation control of the S10 r-protein operon of Escherichia coli." J Mol Biol 245(5);474-85. PMID: 7844821


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by Pathway Tools version 19.5 (software by SRI International) on Thu May 5, 2016, biocyc13.