Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Pathway: formate to trimethylamine N-oxide electron transfer

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Genetic Regulation Schematic: ?

Superclasses: Generation of Precursor Metabolites and Energy Electron Transfer
Generation of Precursor Metabolites and Energy Respiration Anaerobic Respiration

Summary:
In the respiratory chain formed by formate dehydrogenase and trimethylamine N-oxide (TMAO) reductase the transfer of electrons from formate to TMAO is coupled to the generation of a proton-motive force across the cytoplasmic membrane.

Two electrons are transferred from the formate oxidation site to the TMAO reduction site by a menaquinone pool. Neither formate dehydrogenase nor TMAO reductase catalyse vectorial proton translocation however the reduction of trimethylamine N-oxide and many other N- and S-oxide compounds contributes two protons to the proton-motive force.

Two of E. coli's formate dehydrogenases, N and O, catalyse the oxidation of formate. Expression of formate dehydrogenase N (Fdh-N) is induced by anaerobiosis and the presence of nitrate [Wang03, Berg90] whereas aerobic conditions, and to a lesser extent nitrate under anaerobic conditions, induce expression of formate dehydrogenase O (Fdh-O) [Abaibou95].

There are three or four forms of TMAO reductase in E. coli, one is a constitutive form, TorZY, which has very low expression levels [Gon00]. TorAC is an inducible TMAO reductase and is expressed in both anaerobic and aerobic conditions [Ansaldi07]. TMAO is the preferred substrate for TMAO reductase [Gon00].

Credits:
Created 17-Aug-2008 by Nolan L , Macquarie University


References

Abaibou95: Abaibou H, Pommier J, Benoit S, Giordano G, Mandrand-Berthelot MA (1995). "Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase." J Bacteriol 177(24);7141-9. PMID: 8522521

Ansaldi07: Ansaldi M, Theraulaz L, Baraquet C, Panis G, Mejean V (2007). "Aerobic TMAO respiration in Escherichia coli." Mol Microbiol 66(2);484-94. PMID: 17850256

Berg90: Berg BL, Stewart V (1990). "Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12." Genetics 1990;125(4);691-702. PMID: 2168848

Gon00: Gon S, Patte JC, Mejean V, Iobbi-Nivol C (2000). "The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli." J Bacteriol 2000;182(20);5779-86. PMID: 11004177

Wang03: Wang H, Gunsalus RP (2003). "Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP." J Bacteriol 185(17);5076-85. PMID: 12923080

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Arifuzzaman06: Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A, Tsuzuki K, Nakamura S, Altaf-Ul-Amin M, Oshima T, Baba T, Yamamoto N, Kawamura T, Ioka-Nakamichi T, Kitagawa M, Tomita M, Kanaya S, Wada C, Mori H (2006). "Large-scale identification of protein-protein interaction of Escherichia coli K-12." Genome Res 16(5);686-91. PMID: 16606699

Barker00: Barker HC, Kinsella N, Jaspe A, Friedrich T, O'Connor CD (2000). "Formate protects stationary-phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide." Mol Microbiol 35(6);1518-29. PMID: 10760151

Barrett85: Barrett EL, Kwan HS (1985). "Bacterial reduction of trimethylamine oxide." Annu Rev Microbiol 1985;39;131-49. PMID: 3904597

Benoit98: Benoit S, Abaibou H, Mandrand-Berthelot MA (1998). "Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli." J Bacteriol 1998;180(24);6625-34. PMID: 9852007

Berg91: Berg BL, Li J, Heider J, Stewart V (1991). "Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine." J Biol Chem 1991;266(33);22380-5. PMID: 1834669

Boonstra75: Boonstra J, Huttunen MT, Konings WN (1975). "Anaerobic transport in Escherichia coli membrane vesicles." J Biol Chem 250(17);6792-8. PMID: 1099094

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

Buc99: Buc J, Santini CL, Giordani R, Czjzek M, Wu LF, Giordano G (1999). "Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli." Mol Microbiol 32(1);159-68. PMID: 10216869

Buchanan08: Buchanan G, Maillard J, Nabuurs SB, Richardson DJ, Palmer T, Sargent F (2008). "Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone." FEBS Lett 582(29);3979-84. PMID: 19013157

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Chan09: Chan CS, Chang L, Rommens KL, Turner RJ (2009). "Differential interactions between Tat-specific redox enzyme peptides and their chaperones." J Bacteriol 191(7):2091-101. PMID: 19151138

Chan10a: Chan CS, Chang L, Winstone TM, Turner RJ (2010). "Comparing system-specific chaperone interactions with their Tat dependent redox enzyme substrates." FEBS Lett 584(22);4553-8. PMID: 20974141

Collins81: Collins MD, Jones D (1981). "Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication." Microbiol Rev 45(2);316-54. PMID: 7022156

Daley05: Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005). "Global topology analysis of the Escherichia coli inner membrane proteome." Science 308(5726);1321-3. PMID: 15919996

delCampillo96: del Campillo Campbell A, Campbell A (1996). "Alternative gene for biotin sulfoxide reduction in Escherichia coli K-12." J Mol Evol 42(2);85-90. PMID: 8919859

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Enoch74: Enoch HG, Lester RL (1974). "The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli." Biochem Biophys Res Commun 61(4);1234-41. PMID: 4616697

Enoch75: Enoch HG, Lester RL (1975). "The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli." J Biol Chem 1975;250(17);6693-705. PMID: 1099093

Enoch82: Enoch HG, Lester RL (1982). "Formate dehydrogenase from Escherichia coli." Methods Enzymol 89 Pt D;537-43. PMID: 6755185

Fujimoto12: Fujimoto N., Kosaka T., Yamada M. (2012). "Menaquinone as Well as Ubiquinone as a Crucial Component in the Escherichia coli Respiratory Chain." Chapter 10 in Chemical Biology, edited by D Ekinci, ISBN 978-953-51-0049-2.

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Wed Dec 17, 2014, biocyc13.