Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Pathway: glycerophosphodiester degradation

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Genetic Regulation Schematic: ?

Superclasses: Degradation/Utilization/Assimilation Alcohols Degradation Glycerol Degradation

Pathway Summary from MetaCyc:
Escherichia coli K12 possesses two systems the salvage of glycerophosphoryl diesters, the Glp system and the Ugp system.

In the Glp system, the glpQ gene encodes a periplasmic glycerophosphoryl diester phosphodiesterase (periplasmic GDP) which hydrolyzes deacylated phospholipids to an alcohol and sn-glycerol 3-phosphate. The latter is then transported into the cell by the GlpT transporter. Periplasmic GDP is specific for the glycerophospho- moiety of the substrate, while the alcohol can be any one of several alcohols. This provides the cell with the capability of channeling a wide variety of glycerophosphodiesters into the glpQT-encoded dissimilatory system.

In the Ugp system the diesters are hydrolyzed during transport at the cytoplasmic side of the inner membrane to sn-glycerol 3-phosphate and an alcohol by a cytoplasmic GDP, an enzyme encoded by the ugpQ gene. The Ugp system is induced when the cells are starved for inorganic phospate, which is generates phosphate by the system [Tommassen91].

In Escherichia coli sn-glycerol 3-phosphate can be further metabolized to dihydroxyacetone phosphate by either of two membrane-bound enzymes, depending on the growth conditions. The presumed role of this process is the salvage of glycerol and glycerol phosphates generated by the breakdown of phospholipids and triacylglycerol. Under aerobic conditions, a homodimeric aerobic glycerol-3-P dehydrogenase (encoded by the glpD gene) is produced, which can accept either oxygen or nitrate as the electron acceptor [Schryvers78]. Under anaerobic conditions, a different glycerol-3-P dehydrogenase is preferentially expressed. This tri-heteromeric protein complex, which is encoded by the glpACB operon, channels the electrons from sn-glycerol 3-phosphate to either fumarate or nitrate [Cole88].

Superpathways: glycerol and glycerophosphodiester degradation

Variants: glycerol degradation I , glycerol degradation V

Credits:
Created in MetaCyc 09-Nov-2011 by Caspi R , SRI International
Imported from MetaCyc 09-Nov-2011 by Caspi R , SRI International


References

Cole88: Cole ST, Eiglmeier K, Ahmed S, Honore N, Elmes L, Anderson WF, Weiner JH (1988). "Nucleotide sequence and gene-polypeptide relationships of the glpABC operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12." J Bacteriol 1988;170(6);2448-56. PMID: 3286606

Schryvers78: Schryvers A, Lohmeier E, Weiner JH (1978). "Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli." J Biol Chem 253(3);783-8. PMID: 340460

Tommassen91: Tommassen J, Eiglmeier K, Cole ST, Overduin P, Larson TJ, Boos W (1991). "Characterization of two genes, glpQ and ugpQ, encoding glycerophosphoryl diester phosphodiesterases of Escherichia coli." Mol Gen Genet 1991;226(1-2);321-7. PMID: 1851953

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Argast78: Argast M, Ludtke D, Silhavy TJ, Boos W (1978). "A second transport system for sn-glycerol-3-phosphate in Escherichia coli." J Bacteriol 136(3);1070-83. PMID: 363686

Austin91: Austin D, Larson TJ (1991). "Nucleotide sequence of the glpD gene encoding aerobic sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12." J Bacteriol 1991;173(1);101-7. PMID: 1987111

Bairoch93: Bairoch A, Boeckmann B (1993). "The SWISS-PROT protein sequence data bank, recent developments." Nucleic Acids Res. 21:3093-3096. PMID: 8332529

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

Brzoska88: Brzoska P, Boos W (1988). "Characteristics of a ugp-encoded and phoB-dependent glycerophosphoryl diester phosphodiesterase which is physically dependent on the ugp transport system of Escherichia coli." J Bacteriol 1988;170(9);4125-35. PMID: 2842304

Collins81: Collins MD, Jones D (1981). "Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication." Microbiol Rev 45(2);316-54. PMID: 7022156

Cozzarelli65: Cozzarelli NR, Koch JP, Hayashi S, Lin EC (1965). "Growth stasis by accumulated L-alpha-glycerophosphate in Escherichia coli." J Bacteriol 90(5);1325-9. PMID: 5321485

Cozzarelli68: Cozzarelli NR, Freedberg WB, Lin EC (1968). "Genetic control of L-alpha-glycerophosphate system in Escherichia coli." J Mol Biol 31(3);371-87. PMID: 4866330

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Ehrmann87: Ehrmann M, Boos W, Ormseth E, Schweizer H, Larson TJ (1987). "Divergent transcription of the sn-glycerol-3-phosphate active transport (glpT) and anaerobic sn-glycerol-3-phosphate dehydrogenase (glpA glpC glpB) genes of Escherichia coli K-12." J Bacteriol 169(2);526-32. PMID: 3027032

Freedberg73: Freedberg WB, Lin EC (1973). "Three kinds of controls affecting the expression of the glp regulon in Escherichia coli." J Bacteriol 115(3);816-23. PMID: 4580569

Fujimoto12: Fujimoto N., Kosaka T., Yamada M. (2012). "Menaquinone as Well as Ubiquinone as a Crucial Component in the Escherichia coli Respiratory Chain." Chapter 10 in Chemical Biology, edited by D Ekinci, ISBN 978-953-51-0049-2.

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA01a: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

HenggeAronis86: Hengge-Aronis R, Boos W (1986). "Translational control of exported proteins in Escherichia coli." J Bacteriol 167(2);462-6. PMID: 3015871

Iuchi90: Iuchi S, Cole ST, Lin EC (1990). "Multiple regulatory elements for the glpA operon encoding anaerobic glycerol-3-phosphate dehydrogenase and the glpD operon encoding aerobic glycerol-3-phosphate dehydrogenase in Escherichia coli: further characterization of respiratory control." J Bacteriol 1990;172(1);179-84. PMID: 2403539

Kawamukai02: Kawamukai M (2002). "Biosynthesis, bioproduction and novel roles of ubiquinone." J Biosci Bioeng 94(6);511-7. PMID: 16233343

Kistler71: Kistler WS, Lin EC (1971). "Anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role." J Bacteriol 108(3);1224-34. PMID: 4945192

Kuritzkes84: Kuritzkes DR, Zhang XY, Lin EC (1984). "Use of phi(glp-lac) in studies of respiratory regulation of the Escherichia coli anaerobic sn-glycerol-3-phosphate dehydrogenase genes (glpAB)." J Bacteriol 157(2);591-8. PMID: 6363389

Lan03: Lan J, Newman EB (2003). "A requirement for anaerobically induced redox functions during aerobic growth of Escherichia coli with serine, glycine and leucine as carbon source." Res Microbiol 154(3);191-7. PMID: 12706508

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Mon Nov 24, 2014, BIOCYC13A.