Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Pathway: demethylmenaquinol-8 biosynthesis I

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Synonyms: demethylmenaquinone-8 biosynthesis I

Superclasses: Biosynthesis Cofactors, Prosthetic Groups, Electron Carriers Biosynthesis Quinol and Quinone Biosynthesis Demethylmenaquinol Biosynthesis Demethylmenaquinol-8 Biosynthesis

Summary:
General Background

Most aerobic Gram-negative bacteria contain ubiquinone (Q) as the sole quinone, while most aerobic Gram-positive bacteria contain menaquinone (MK) and/or demethylmenaquinone (DMK) as the main quinone. However, most of the anaerobic bacteria, regardless whether they are Gram-negative or Gram-positive, contain MK or DMK as their main quinones. Some facultatively anaerobic bacteria, such as E. coli, contain Q, MK, and DMK, which they use under different growth conditions [Meganathan01].

DMKs are known to have side chains of different sizes in different organisms, and sometimes even within the same organism. The most common DMKs contain 7, 8 and 9 isoprene units. E. coli contains demethylmenaquinone-8 (DMK-8) [Bentley83]. DMK-8 is a low-molecular weight lipophilic component of the cytoplasmic membrane and functions as a reversible redox component of the electron transfer chain, mediating electron transfer between hydrogenases and cytochromes.

DMK is also an intermediate in MK formation (see superpathway of menaquinol-8 biosynthesis I) [Meganathan01]. DMK-8 is methylated at the naphthoquinone ring to MK-8 by a methyltransferase, which uses S-adenosylmethionine as the methyl donor [Collins81].

About This Pathway

The conversion of 1,4-dihydroxy-2-naphthoate (DHNA) to DMK-8 in extracts of E. coli is catalyzed by the membrane-bound 1,4-dihydroxy-2-octaprenyltransferase (MenA). The conversion of DHNA to DMK requires replacement of the carboxyl with the isoprenoid side chain. Prenylation and decarboxylation may occur in a single active site, since symmetry experiments exclude 1,4-naphthoquinone as an intermediate. Moreover, there has been no evidence for two separate reaction steps or enzymes. Based on structural and mutagenesis data, a three-stage ionization-condensation-elimination mechanism involving a carbocation intermediate has recently been proposed [Huang14].

Review: Meganathan, R. and O. Kwon (2009) "Biosynthesis of Menaquinone (Vitamin K2) and Ubiquinone (Coenzyme Q)." EcoSal 3.6.3.3 [ECOSAL].

Superpathways: superpathway of chorismate metabolism , superpathway of menaquinol-8 biosynthesis I

Credits:
Created 17-Mar-2008 by Caspi R , SRI International
Last-Curated ? 31-Jul-2014 by Keseler I , SRI International


References

Bentley83: Bentley R, Meganathan R (1983). "Vitamin K biosynthesis in bacteria--precursors, intermediates, enzymes, and genes." J Nat Prod 46(1);44-59. PMID: 6406647

Collins81: Collins MD, Jones D (1981). "Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication." Microbiol Rev 45(2);316-54. PMID: 7022156

ECOSAL: "Escherichia coli and Salmonella: Cellular and Molecular Biology." Online edition.

Huang14: Huang H, Levin EJ, Liu S, Bai Y, Lockless SW, Zhou M (2014). "Structure of a Membrane-Embedded Prenyltransferase Homologous to UBIAD1." PLoS Biol 12(7);e1001911. PMID: 25051182

Meganathan01: Meganathan R (2001). "Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms." Vitam Horm 61;173-218. PMID: 11153266

Shineberg76: Shineberg B, Young IG (1976). "Biosynthesis of bacterial menaquinones: the membrane-associated 1,4-dihydroxy-2-naphthoate octaprenyltransferase of Escherichia coli." Biochemistry 1976;15(13);2754-8. PMID: 949474

Young75: Young IG (1975). "Biosynthesis of bacterial menaquinones. Menaquinone mutants of Escherichia coli." Biochemistry 14(2);399-406. PMID: 1091286

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Daley05: Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005). "Global topology analysis of the Escherichia coli inner membrane proteome." Science 308(5726);1321-3. PMID: 15919996

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Kong11: Kong MK, Lee PC (2011). "Metabolic engineering of menaquinone-8 pathway of Escherichia coli as a microbial platform for vitamin K production." Biotechnol Bioeng 108(8);1997-2002. PMID: 21445887

Rapp04: Rapp M, Drew D, Daley DO, Nilsson J, Carvalho T, Melen K, De Gier JW, Von Heijne G (2004). "Experimentally based topology models for E. coli inner membrane proteins." Protein Sci 13(4);937-45. PMID: 15044727

Shapira07: Shapira R, Mimran E (2007). "Isolation and characterization of Escherichia coli mutants exhibiting altered response to thymol." Microb Drug Resist 13(3);157-65. PMID: 17949301

Suvarna98: Suvarna K, Stevenson D, Meganathan R, Hudspeth ME (1998). "Menaquinone (vitamin K2) biosynthesis: localization and characterization of the menA gene from Escherichia coli." J Bacteriol 180(10);2782-7. PMID: 9573170

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

UniProtGOA12: UniProt-GOA (2012). "Gene Ontology annotation based on UniPathway vocabulary mapping."

Wallace77: Wallace BJ, Young IG (1977). "Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant." Biochim Biophys Acta 461(1);84-100. PMID: 195602


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Sun Nov 23, 2014, biocyc14.