Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

Escherichia coli K-12 substr. MG1655 Pathway: pentose phosphate pathway

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Genetic Regulation Schematic: ?

Synonyms: pentose shunt, hexose monophosphate shunt, phosphogluconate pathway, superpathway of oxidative and non-oxidative branches of pentose phosphate pathway

Superclasses: Generation of Precursor Metabolites and Energy Pentose Phosphate Pathways
Superpathways

Summary:
The pentose phosphate pathway is one of the three essential pathways of central metabolism. It supplies three of E. coli's 13 precursor metabolites (compounds needed for the biosyntheses): D-ribose-5-phosphate, sedoheptulose-7-phosphate, and erythrose-4-phosphate. Regardless of the carbon source upon which E. coli is growing, some carbon must flow through the pentose phosphate pathway to meet the cell's requirements for these metabolites. In addition, this pathway is an important source of reducing equivalents in the form of NADPH, which is also needed for biosyntheses. The pathway begins with one intermediate of glycolysis, glucose-6-phosphate, and ends with the formation of two others, fructose-6-phosphate and D-glyceraldehyde-3-phosphate.

For convenience, the pentose phosphate pathway is commonly divided into its preliminary oxidative portion, in which glucose-6-phosphate is oxidized to ribulose-5-phosphate, and its subsequent non-oxidative portion in which, through a series of transaldolase and transketolase reactions, ribulose-5-phosphate is converted into fructose-6-phosphate and glyceraldehyde-3-phosphate.

Subpathways: pentose phosphate pathway (non-oxidative branch) , pentose phosphate pathway (oxidative branch) I

Credits:
Revised 14-Jul-2006 by Ingraham JL , UC Davis

References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Acebron09: Acebron SP, Martin I, del Castillo U, Moro F, Muga A (2009). "DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface." FEBS Lett 583(18);2991-6. PMID: 19698713

Asztalos07: Asztalos P, Parthier C, Golbik R, Kleinschmidt M, Hubner G, Weiss MS, Friedemann R, Wille G, Tittmann K (2007). "Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate." Biochemistry 46(43);12037-52. PMID: 17914867

Aucamp08: Aucamp JP, Martinez-Torres RJ, Hibbert EG, Dalby PA (2008). "A microplate-based evaluation of complex denaturation pathways: structural stability of Escherichia coli transketolase." Biotechnol Bioeng 99(6);1303-10. PMID: 17969139

Avison01: Avison MB, Horton RE, Walsh TR, Bennett PM (2001). "Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media." J Biol Chem 276(29);26955-61. PMID: 11350954

Banerjee72: Banerjee S, Fraenkel DG (1972). "Glucose-6-phosphate dehydrogenase from Escherichia coli and from a "high-level" mutant." J Bacteriol 110(1);155-60. PMID: 4401601

Benov99: Benov L, Fridovich I (1999). "Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli. The transketolase connection." J Biol Chem 274(7);4202-6. PMID: 9933617

Binkowski05: Binkowski TA, Joachimiak A, Liang J (2005). "Protein surface analysis for function annotation in high-throughput structural genomics pipeline." Protein Sci 14(12);2972-81. PMID: 16322579

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Chandran03: Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003). "Phosphoenolpyruvate availability and the biosynthesis of shikimic acid." Biotechnol Prog 19(3);808-14. PMID: 12790643

Chang95: Chang JT, Green CB, Wolf RE (1995). "Inhibition of translation initiation on Escherichia coli gnd mRNA by formation of a long-range secondary structure involving the ribosome binding site and the internal complementary sequence." J Bacteriol 177(22);6560-7. PMID: 7592434

Chauhan96: Chauhan RP, Woodley JM, Powell LW (1996). "In situ product removal from E. coli transketolase-catalyzed biotransformations." Ann N Y Acad Sci 799;545-54. PMID: 8958111

Chen10a: Chen YY, Ko TP, Chen WH, Lo LP, Lin CH, Wang AH (2010). "Conformational changes associated with cofactor/substrate binding of 6-phosphogluconate dehydrogenase from Escherichia coli and Klebsiella pneumoniae: Implications for enzyme mechanism." J Struct Biol 169(1);25-35. PMID: 19686854

Conway91: Conway T, Yi KC, Egan SE, Wolf RE, Rowley DL (1991). "Locations of the zwf, edd, and eda genes on the Escherichia coli physical map." J Bacteriol 173(17);5247-8. PMID: 1885506

Dalby07: Dalby PA, Aucamp JP, George R, Martinez-Torres RJ (2007). "Structural stability of an enzyme biocatalyst." Biochem Soc Trans 35(Pt 6);1606-9. PMID: 18031275

David70: David J, Wiesmeyer H (1970). "Regulation of ribose metabolism in Escherichia coli. II. Evidence for two ribose-5-phosphate isomerase activities." Biochim Biophys Acta 208(1);56-67. PMID: 4909663

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Domain07: Domain F, Bina XR, Levy SB (2007). "Transketolase A, an enzyme in central metabolism, derepresses the marRAB multiple antibiotic resistance operon of Escherichia coli by interaction with MarR." Mol Microbiol 66(2);383-94. PMID: 17850260

Edwards00: Edwards JS, Palsson BO (2000). "Robustness analysis of the Escherichia coli metabolic network." Biotechnol Prog 16(6);927-39. PMID: 11101318

Edwards00a: Edwards JS, Palsson BO (2000). "Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions." BMC Bioinformatics 1;1. PMID: 11001586

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Mon Dec 22, 2014, biocyc11.