Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Pathway: glucose and glucose-1-phosphate degradation

Note: a dashed line (without arrowheads) between two compound names is meant to imply that the two names are just different instantiations of the same compound -- i.e. one may be a specific name and the other a general name, or they may both represent the same compound in different stages of a polymerization-type pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Genetic Regulation Schematic: ?

Superclasses: Degradation/Utilization/Assimilation Carbohydrates Degradation Sugars Degradation

Summary:
General Background

It is well known that Escherichia coli can use glucose as a sole source of carbon and energy. The D isomer of glucose is widely found in nature and the β-D-glucose anomer is predominant in aqueous solution [Franks87]. Exogenous β-D-glucose enters the cell through outer membrane porins and is then actively transported into the cell via the inner membrane phosphotransferase system (PTS) which transforms it into β-D-glucose-6-phosphate as it crosses the cell membrane. β-D-glucose-6-phosphate is also produced biosynthetically during gluconeogenesis. β-D-glucose-6-phosphate is one of the basic precursor metabolites for biosynthetic pathways. It is also a substrate for the central degradative pathways glycolysis and the pentose phosphate cycle.

E. coli can also grow on exogenously supplied glucose-1-phosphate (minimal medium containing glucose 1-phosphate) as sole carbon source [Pradel91]. Endogenous α-D-glucose-1-phosphate is an intermediate in the metabolism of glycogen and galactose. It is a building block for the sugar nucleotide UDP-glucose, which is used in some biosynthetic pathways. Reviewed by Mayer, C. and W. Boos in [ECOSAL] (see below).

About This Pathway

The dashed line connecting D-glucose with β-D-glucose is meant to show that the pathway is possible, but incompletely defined. The anomeric form (α or β) of the D-glucose product of EC 3.1.3.10 is not specified by the EC and it was not found in the literature for the indicated phosphatases. However, if α-D-glucose is produced, it may either spontaneously convert to β-D-glucose, or E. coli aldose-1-epimerase (mutarotase, EC 5.1.3.3) could convert it to β-D-glucose [Bouffard94] and in [Mulhern73].

Substrates β-D-glucose and α-D-glucose-1-phosphate may be derived from exogenous sources, or endogenously produced, as indicated by the input pathway links. In general, the ability to utilize sugars and their modes of utilization are strain-dependent in Escherichia coli.

Exogenous β-D-glucose uptake via the PTS curbs the utilization of other exogenous sugars, which is known as the glucose effect. This effect is lost if β-D-glucose becomes limiting. Under these conditions β-D-glucose can also enter the cell without phosphorylation, via outer membrane porins and the Mgl ABC transporter (not shown).

Endogenous β-D-glucose can be produced by pathways for the degradation of glucose-containing disaccharides such as maltose (see pathway glycogen degradation I) trehalose, lactose and melibiose, as shown in the pathway links. In contrast to exogenous β-D-glucose which is phosphorylated by the PTS, endogenous β-D-glucose is phosphorylated by glucokinase before entering central metabolism, as shown in the pathway links (in [Meyer97]). More recently, a role for glucokinase and glucose in a complex regulatory mechanism for maltose utilization involving Glk, MalT, Mlc and PtsG has been proposed [Lengsfeld09].

It is possible that high levels of β-D-glucose could accumulate inside the cell under certain conditions. It has been shown that the maltose acetyltransferase product of gene maa efficiently acetylates both maltose and β-D-glucose (not shown). Evidence suggests that acetylation could be a detoxification mechanism in which acetylated β-D-glucose diffuses from the cell [Boos81, Brand91].

There is evidence that β-D-glucose can be oxidized to glucono-δ-lactone (glucono-1,5-lactone) by inner membrane glucose dehydrogenase. However, the fate of the glucono-δ-lactone remains unclear. It has been reported that membrane vesicles from glucose-grown E. coli oxidized glucose to gluconate in the presence of pyrrolo-quinoline quinone, a cofactor for glucose dehydrogenase [vanSchie85]. A gluconolactonase (EC 3.1.1.17) has been partially characterized in E. coli, but its D-gluconate product was not specifically identified [Hucho72] and no gene encoding this enzyme has been identified. D-gluconate can be degraded by a glucose utilization pathway that was described early [Cohen51], as shown in the pathway link. In addition, more recent work suggested possible excretion of D-gluconate although this compound was not specifically identified [Sashidhar10].

α-D-glucose-1-phosphate is reversibly converted by phosphoglucomutase to α-D-glucose-6-phosphate. α-D-glucose-1-phosphate is used in glycogen biosynthesis (see glycogen biosynthesis I (from ADP-D-Glucose)) and is produced during glycogen degradation (see glycogen degradation I). α-D-glucose-6-phosphate may spontaneously convert to β-D-glucose-6-phosphate in the physiological pH range [Salas65]. In addition, a glucose-6-phosphate 1-epimerase had been identified in E. coli ATCC 9637 that could catalyze this production of β-D-glucose 6-phosphate.

Several phosphatases may catalyze the production of D-glucose (anomeric form unspecified) from α-D-glucose-1-phosphate. The product of gene agp is a periplasmic enzyme that scavenges glucose and allows E. coli to grow with glucose-1-phosphate as sole carbon source [Pradel91] and in [Lee03a].

Review: Mayer, C. and W. Boos (2005) "Hexose/Pentose and Hexitol/Pentitol Metabolism." EcoSal module 3.4.1 [ECOSAL]

Credits:
Last-Curated ? 17-Mar-2010 by Fulcher C , SRI International


References

Boos81: Boos W, Ferenci T, Shuman HA (1981). "Formation and excretion of acetylmaltose after accumulation of maltose in Escherichia coli." J Bacteriol 1981;146(2);725-32. PMID: 7012137

Bouffard94: Bouffard GG, Rudd KE, Adhya SL (1994). "Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli." J Mol Biol 1994;244(3);269-78. PMID: 7966338

Brand91: Brand B, Boos W (1991). "Maltose transacetylase of Escherichia coli. Mapping and cloning of its structural, gene, mac, and characterization of the enzyme as a dimer of identical polypeptides with a molecular weight of 20,000." J Biol Chem 1991;266(21);14113-8. PMID: 1856235

Cohen51: Cohen SS (1951). "Utilization of gluconate and glucose in growing and virus-infected Escherichia coli." Nature 168(4278);746-7. PMID: 14882337

ECOSAL: "Escherichia coli and Salmonella: Cellular and Molecular Biology." Online edition.

Franks87: Franks F. (1987). "Physical chemistry of small carbohydrates-equilibrium solution properties." Pure & Appl. Chem. Vol. 59, No. 9, pp. 1189-1202.

Hucho72: Hucho F, Wallenfels K (1972). "Glucono- -lactonase from Escherichia coli." Biochim Biophys Acta 1972;276(1);176-9. PMID: 4625870

Lee03a: Lee DC, Cottrill MA, Forsberg CW, Jia Z (2003). "Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase." J Biol Chem 278(33);31412-8. PMID: 12782623

Lengsfeld09: Lengsfeld C, Schonert S, Dippel R, Boos W (2009). "Glucose- and glucokinase-controlled mal gene expression in Escherichia coli." J Bacteriol 191(3);701-12. PMID: 19028900

Meyer97: Meyer D, Schneider-Fresenius C, Horlacher R, Peist R, Boos W (1997). "Molecular characterization of glucokinase from Escherichia coli K-12." J Bacteriol 179(4);1298-306. PMID: 9023215

Mulhern73: Mulhern SA, Fishman PH, Kusiak JW, Bailey JM (1973). "Physical characteristics and chemi-osmotic transformations of mutarotases from various species." J Biol Chem 248(12);4163-73. PMID: 4711601

Pradel91: Pradel E, Boquet PL (1991). "Utilization of exogenous glucose-1-phosphate as a source of carbon or phosphate by Escherichia coli K12: respective roles of acid glucose-1-phosphatase, hexose-phosphate permease, phosphoglucomutase and alkaline phosphatase." Res Microbiol 1991;142(1);37-45. PMID: 1648777

Salas65: Salas M, Vinuela E, Sols A (1965). "Spontaneous and enzymatically catalyzed anomerization of glucose 6-phosphate and anomeric specificity of related enzymes." J Biol Chem 240;561-8. PMID: 14275652

Sashidhar10: Sashidhar B, Inampudi KK, Guruprasad L, Kondreddy A, Gopinath K, Podile AR (2010). "Highly Conserved Asp-204 and Gly-776 Are Important for Activity of the Quinoprotein Glucose Dehydrogenase of Escherichia coli and for Mineral Phosphate Solubilization." J Mol Microbiol Biotechnol 18(2);109-119. PMID: 20215780

vanSchie85: van Schie BJ, Hellingwerf KJ, van Dijken JP, Elferink MG, van Dijl JM, Kuenen JG, Konings WN (1985). "Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi)." J Bacteriol 163(2);493-9. PMID: 3926746

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Adhya71: Adhya S, Schwartz M (1971). "Phosphoglucomutase mutants of Escherichia coli K-12." J Bacteriol 108(2);621-6. PMID: 4942754

Arora95: Arora KK, Pedersen PL (1995). "Glucokinase of Escherichia coli: induction in response to the stress of overexpressing foreign proteins." Arch Biochem Biophys 1995;319(2);574-8. PMID: 7786044

Asensio58: Asensio C, Sols A (1958). "Utilization and phosphorylation of sugars by Escherichia coli." Revista Espanola de Fisiologia 14:269-275 (1958). PMID: 13658662

Asensio63: Asensio C, Avigad G, Horecker BL (1963). "Preferential galactose utilization in a mutant strain of E. coli." Arch Biochem Biophys 103;299-309. PMID: 14103281

Brautaset98: Brautaset T, Petersen S, Valla S (1998). "An experimental study on carbon flow in Escherichia coli as a function of kinetic properties and expression levels of the enzyme phosphoglucomutase." Biotechnol Bioeng 58(2-3);299-302. PMID: 10191405

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

CletonJansen90: Cleton-Jansen AM, Goosen N, Fayet O, van de Putte P (1990). "Cloning, mapping, and sequencing of the gene encoding Escherichia coli quinoprotein glucose dehydrogenase." J Bacteriol 172(11);6308-15. PMID: 2228962

Constantinidou06: Constantinidou C, Hobman JL, Griffiths L, Patel MD, Penn CW, Cole JA, Overton TW (2006). "A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth." J Biol Chem 281(8);4802-15. PMID: 16377617

Cottrill02: Cottrill MA, Golovan SP, Phillips JP, Forsberg CW (2002). "Inositol phosphatase activity of the Escherichia coli agp-encoded acid glucose-1-phosphatase." Can J Microbiol 48(9);801-9. PMID: 12455612

Cozier95: Cozier GE, Anthony C (1995). "Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens." Biochem J 312 ( Pt 3);679-85. PMID: 8554505

Cozier99: Cozier GE, Salleh RA, Anthony C (1999). "Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine." Biochem J 1999;340 ( Pt 3);639-47. PMID: 10359647

deJonge96: de Jonge R, Teixeira de Mattos MJ, Stock JB, Neijssel OM (1996). "Pyrroloquinoline quinone, a chemotactic attractant for Escherichia coli." J Bacteriol 178(4);1224-6. PMID: 8576064

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Duckworth73: Duckworth HW, Barber BH, Sanwal BD (1973). "The interaction of phosphoglucomutase with nucleotide inhibitors." J Biol Chem 248(4);1431-5. PMID: 4568817

Elias00: Elias MD, Tanaka M, Izu H, Matsushita K, Adachi O, Yamada M (2000). "Functions of amino acid residues in the active site of Escherichia coli pyrroloquinoline quinone-containing quinoprotein glucose dehydrogenase." J Biol Chem 275(10);7321-6. PMID: 10702303

Elias01: Elias M, Tanaka M, Sakai M, Toyama H, Matsushita K, Adachi O, Yamada M (2001). "C-terminal periplasmic domain of Escherichia coli quinoprotein glucose dehydrogenase transfers electrons to ubiquinone." J Biol Chem 276(51);48356-61. PMID: 11604400

Elias04: Elias MD, Nakamura S, Migita CT, Miyoshi H, Toyama H, Matsushita K, Adachi O, Yamada M (2004). "Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase." J Biol Chem 279(4);3078-83. PMID: 14612441

Eydallin07: Eydallin G, Viale AM, Moran-Zorzano MT, Munoz FJ, Montero M, Baroja-Fernandez E, Pozueta-Romero J (2007). "Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12." FEBS Lett 581(16);2947-53. PMID: 17543954

Gaudet10: Gaudet P, Livstone M, Thomas P (2010). "Annotation inferences using phylogenetic trees." PMID: 19578431

Geiger87: Geiger O, Gorisch H (1987). "Enzymatic determination of pyrroloquinoline quinone using crude membranes from Escherichia coli." Anal Biochem 164(2);418-23. PMID: 3118738

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Fri Nov 28, 2014, BIOCYC13A.