Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

Escherichia coli K-12 substr. MG1655 Pathway: fatty acid β-oxidation I
Inferred from experiment

Pathway diagram: fatty acid beta-oxidation I

Note: a dashed line (without arrowheads) between two compound names is meant to imply that the two names are just different instantiations of the same compound -- i.e. one may be a specific name and the other a general name, or they may both represent the same compound in different stages of a polymerization-type pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Schematic showing all replicons, marked with selected genes

Genetic Regulation Schematic

Genetic regulation schematic for fatty acid beta-oxidation I

Superclasses: Degradation/Utilization/AssimilationFatty Acid and Lipids DegradationFatty Acids Degradation


Aerobic pathway

Although enzymes of the pathway handle both short and long chain fatty acids, it is the long chain compounds that induce the enzymes of the pathway [Clark81]. Each turn of the cycle removes two carbon atoms until only two or three remain. When even-numbered fatty acids are broken down, a two-carbon compound remains, acetyl-CoA. When odd number fatty acids are broken down, a three-carbon residue results, propionylCoA. This is further catabolized by the reactions of proprionate catabolism. Unsaturated fatty acids, with cis double bonds located at odd-numbered carbon atoms, enter the main pathway of saturated fatty acid degradation by converting related metabolites of cis configuration and D stereoisomers, derived from breakdown of unsaturated fatty acids, to the trans- or L isomers of saturated fatty acid breakdown by an isomerase and an epimerase, respectively. When cis double bonds are located at even-numbered carbon atoms, such as linoleic acid (cis,cis(9,12)-octadecadienoic acid), after the fatty acid is degraded to the ten carbon stage an extra step is required to deal with the resulting compound, trans,δ(2)-cis,δ(4)decadienoyl-CoA. The enzyme 2,4-dienoyl-CoA reductase, E.C., converts this to trans,δ(2)decenoyl-CoA which enters the normal cycle at the point of the isomerase.

Anaerobic pathway

More recently, an anaerobic pathway of fatty acid metabolism has been characterized [Campbell03]. Anaerobic β-oxidation of fatty acids utilizes fumarate as the terminal electron acceptor [MorganKiss04]. In contrast to the aerobic pathway, octanoate and decanoate can serve as substrates for the anaerobic fatty acid oxidation pathway [Campbell03]. In the anaerobic pathway FadI, FadJ, and FadK serve functions parallel to those of FadA, FadB, and FadD in the aerobic pathway [Campbell03].

The glyoxylate cycle is necessary for anaerobic or aerobic fatty acid oxidation to provide the carbon and energy for cell growth [Campbell03].

Created 06-Feb-1995 by Riley M, Marine Biological Laboratory


Campbell03: Campbell JW, Morgan-Kiss RM, E Cronan J (2003). "A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway." Mol Microbiol 47(3);793-805. PMID: 12535077

Clark81: Clark D (1981). "Regulation of fatty acid degradation in Escherichia coli: analysis by operon fusion." J Bacteriol 1981;148(2);521-6. PMID: 6271734

MorganKiss04: Morgan-Kiss RM, Cronan JE (2004). "The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase." J Biol Chem 279(36);37324-33. PMID: 15213221

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Bairoch93: Bairoch A, Boeckmann B (1993). "The SWISS-PROT protein sequence data bank, recent developments." Nucleic Acids Res. 21:3093-3096. PMID: 8332529

Beloin04: Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004). "Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression." Mol Microbiol 51(3);659-74. PMID: 14731270

Binstock81: Binstock JF, Schulz H (1981). "Fatty acid oxidation complex from Escherichia coli." Methods Enzymol 1981;71 Pt C;403-11. PMID: 7024730

Black92: Black PN, DiRusso CC, Metzger AK, Heimert TL (1992). "Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase." J Biol Chem 1992;267(35);25513-20. PMID: 1460045

Black97: Black PN, Zhang Q, Weimar JD, DiRusso CC (1997). "Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity." J Biol Chem 272(8);4896-903. PMID: 9030548

BRENDA14: BRENDA team (2014). Imported from BRENDA version existing on Aug 2014.

Campbell02: Campbell JW, Cronan JE (2002). "The enigmatic Escherichia coli fadE gene is yafH." J Bacteriol 184(13);3759-64. PMID: 12057976

Chen94a: Chen D, Swenson RP (1994). "Cloning, sequence analysis, and expression of the genes encoding the two subunits of the methylotrophic bacterium W3A1 electron transfer flavoprotein." J Biol Chem 269(51);32120-30. PMID: 7798207

Daley05: Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005). "Global topology analysis of the Escherichia coli inner membrane proteome." Science 308(5726);1321-3. PMID: 15919996

Dellomonaco11: Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011). "Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals." Nature 476(7360);355-9. PMID: 21832992

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Dirusso04: Dirusso CC, Black PN (2004). "Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system." J Biol Chem 279(48);49563-6. PMID: 15347640

Gaudet10: Gaudet P, Livstone M, Thomas P (2010). "Annotation inferences using phylogenetic trees." PMID: 19578431

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA01a: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

GOA06: GOA, SIB (2006). "Electronic Gene Ontology annotations created by transferring manual GO annotations between orthologous microbial proteins."

He96: He XY, Yang SY (1996). "Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli." Biochemistry 1996;35(29);9625-30. PMID: 8755745

Hsu91: Hsu L, Jackowski S, Rock CO (1991). "Isolation and characterization of Escherichia coli K-12 mutants lacking both 2-acyl-glycerophosphoethanolamine acyltransferase and acyl-acyl carrier protein synthetase activity." J Biol Chem 1991;266(21);13783-8. PMID: 1649829

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Ishizaki06: Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ (2006). "The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness." Plant J 47(5);751-60. PMID: 16923016

Showing only 20 references. To show more, press the button "Show all references".

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by Pathway Tools version 19.5 (software by SRI International) on Sun May 1, 2016, biocyc14.