Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Enzyme: DNA polymerase III, α subunit



Gene: dnaE Accession Numbers: EG10238 (EcoCyc), b0184, ECK0183

Synonyms: sdgC, polC

Regulation Summary Diagram: ?

Component of:
DNA polymerase III, core enzyme (summary available)
DNA polymerase III, holoenzyme (extended summary available)

Summary:
The alpha subunit of DNA polymerase III catalyzes the polymerase activity of the holoenzyme complex [Maki85]. Replicative 5' to 3' polymerization of DNA requires dNTPs and template DNA with a bound RNA primer [Kornberg72, Hurwitz74]. The newly polymerized DNA is covalently attached to the RNA primer [Livingston75]. The presence of the epsilon subunit increases the polymerase activity of the alpha subunit two-fold [Maki87].

The alpha subunit is required for misincorporation and bypass during UV mutagenesis [Sharif90, Bridges90].

The middle portion of the alpha subunit (residues 542-991) is involved in binding to the polymerase III beta subunit. Deletion of the amino-terminal portion of alpha (residues 1-542) actually increases its affinity for beta [Kim96c]. The carboxy-terminus of alpha is required for binding to the polymerase III tau subunit [Kim96d]. The amino-terminal php domain of alpha is required for binding to the epsilon subunit [Wieczorek06].

Transcription of dnaE is induced by nalidixic acid, but not by mitomycin C, and induction does not require LexA [Van01].

Overproduction of alpha can compensate for an otherwise lethal deficiency in DNA polymerase I [Witkin92].

A crystal structure of the first 917 amino acids of DnaE has been determined to 2.3 Å resolution [Lamers06].

Citations: [Welch82]

Gene Citations: [Rhodius05]

Locations: cytosol

Map Position: [205,126 -> 208,608] (4.42 centisomes)
Length: 3483 bp / 1160 aa

Molecular Weight of Polypeptide: 129.9 kD (from nucleotide sequence)

Unification Links: ASAP:ABE-0000624 , CGSC:373 , DIP:DIP-9458N , EchoBASE:EB0234 , EcoGene:EG10238 , EcoliWiki:b0184 , Mint:MINT-1224103 , ModBase:P10443 , OU-Microarray:b0184 , PortEco:dnaE , PR:PRO_000022462 , Pride:P10443 , Protein Model Portal:P10443 , RefSeq:NP_414726 , RegulonDB:EG10238 , SMR:P10443 , String:511145.b0184 , UniProt:P10443

Relationship Links: InterPro:IN-FAMILY:IPR003141 , InterPro:IN-FAMILY:IPR004013 , InterPro:IN-FAMILY:IPR004365 , InterPro:IN-FAMILY:IPR004805 , InterPro:IN-FAMILY:IPR011708 , InterPro:IN-FAMILY:IPR012340 , InterPro:IN-FAMILY:IPR016195 , PDB:Structure:2HNH , PDB:Structure:2HQA , PDB:Structure:4GX8 , PDB:Structure:4GX9 , PDB:Structure:4JOM , Pfam:IN-FAMILY:PF01336 , Pfam:IN-FAMILY:PF02811 , Pfam:IN-FAMILY:PF07733 , Smart:IN-FAMILY:SM00481

Gene-Reaction Schematic: ?

Genetic Regulation Schematic: ?

GO Terms:

Biological Process: GO:0006261 - DNA-dependent DNA replication Inferred by computational analysis Inferred from experiment [Maki85, UniProtGOA11a, GOA01, GOA01a]
GO:0006260 - DNA replication Inferred by computational analysis [UniProtGOA11a, GOA01a]
Molecular Function: GO:0003887 - DNA-directed DNA polymerase activity Inferred from experiment Inferred by computational analysis [UniProtGOA11a, GOA01, GOA01a, Maki85]
GO:0005515 - protein binding Inferred from experiment [Rajagopala14, Toste13, Jergic13, Kelman98, Kim96d, Rajagopala12, Stukenberg91, Ozawa08, Gao01, Butland05, Jonczyk98, Oishi06]
GO:0003676 - nucleic acid binding Inferred by computational analysis [GOA01a]
GO:0003677 - DNA binding Inferred by computational analysis [GOA01a]
GO:0003824 - catalytic activity Inferred by computational analysis [GOA01a]
GO:0016740 - transferase activity Inferred by computational analysis [UniProtGOA11a]
GO:0016779 - nucleotidyltransferase activity Inferred by computational analysis [UniProtGOA11a]
Cellular Component: GO:0005737 - cytoplasm Inferred from experiment Inferred by computational analysis [UniProtGOA11, UniProtGOA11a, Maki85]
GO:0005829 - cytosol Inferred from experiment Inferred by computational analysis [DiazMejia09, Ishihama08]
GO:0044776 - DNA polymerase III, core complex Inferred from experiment [McHenry79]

MultiFun Terms: information transfer DNA related DNA replication

Essentiality data for dnaE knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox No 37 Aerobic 7   No [Baba06, Comment 1]

Enzymatic reaction of: DNA polymerase

EC Number: 2.7.7.7

a deoxyribonucleoside triphosphate + (deoxynucleotides)(n) <=> (deoxynucleotides)(n+1) + diphosphate

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Reversibility of this reaction is unspecified.

Summary:
This enzyme can also use divalent manganese ion as a cofactor [Helfman76].

Cofactors or Prosthetic Groups: Mg2+ [Kornberg72]


Subunit of: DNA polymerase III, core enzyme

Subunit composition of DNA polymerase III, core enzyme = [DnaE][DnaQ][HolE]
         DNA polymerase III, α subunit = DnaE (extended summary available)
         DNA polymerase III, ε subunit = DnaQ (extended summary available)
         DNA polymerase III, θ subunit = HolE (extended summary available)

Component of: DNA polymerase III, holoenzyme (extended summary available)

Summary:
The DNA polymerase III core enzyme contains one each of the alpha, epsilon and theta subunits and can carry out the basic polymerase and exonuclease activities of polymerase III [McHenry79].

Based on yeast two-hybrid data, both alpha and theta interact with epsilon, but not each other [Jonczyk98]. The interaction between epsilon and theta has been examined via lanthanide-labeling NMR [Pintacuda06]. In a cell-free translation system, theta is required for the generation of soluble epsilon. An NMR analysis of cell-free DNA core enzyme shows epsilon connects to alpha via a flexible linker region [Ozawa08].

Locations: cytosol

GO Terms:

Cellular Component: GO:0005829 - cytosol


Subunit of: DNA polymerase III, holoenzyme

Subunit composition of DNA polymerase III, holoenzyme = [(DnaE)(DnaQ)(HolE)]3[(DnaX)3(HolB)(HolA)][(DnaN)2]2[(DnaX)2][(HolC)(HolD)]4
         DNA polymerase III, core enzyme = (DnaE)(DnaQ)(HolE) (summary available)
                 DNA polymerase III, α subunit = DnaE (extended summary available)
                 DNA polymerase III, ε subunit = DnaQ (extended summary available)
                 DNA polymerase III, θ subunit = HolE (extended summary available)
         DNA polymerase III, preinitiation complex = (DnaX)3(HolB)(HolA) (extended summary available)
                 DNA polymerase III, τ subunit = DnaX
                 DNA polymerase III, δ prime subunit = HolB (summary available)
                 DNA polymerase III, δ subunit = HolA (summary available)
         DNA polymerase III, β subunit = (DnaN)2 (extended summary available)
         DNA polymerase III, τ subunit dimer = (DnaX)2 (extended summary available)
                 DNA polymerase III, τ subunit = DnaX
         DNA polymerase III, ψ-χ subunit = (HolC)(HolD) (extended summary available)
                 DNA polymerase III, χ subunit = HolC
                 DNA polymerase III, ψ subunit = HolD

Summary:
DNA polymerase III holoenzyme is the enzyme primarily responsible for replicative DNA synthesis in E. coli. It carries out primer-initiated 5' to 3' polymerization of DNA on a single-stranded DNA template, as well as 3' to 5' exonucleolytic editing of mispaired nucleotides.

Replicative DNA polymerization begins when the preinitiation complex binds single-stranded DNA near an RNA primer. The preinitiation complex then loads the beta processivity clamp onto the DNA at this site, after which three core polymerases, chaperoned into place by the tau subunit, bind to the processivity clamp, with one polymerase on the leading strand and two on the lagging. DNA is synthesized 5' to 3' from primers on both the leading and lagging strands, covalently attaching the newly synthesized DNA to the primer. Tau displaces beta in the presence of duplex DNA, dissociating the polymerase from the template when it reaches a temporary stop on the lagging strand or when synthesis is complete on either strand [Maki88, Maki88a, Onrust95, Maki88b, Nusslein76, ReyesLamothe10].

For more detailed discussion of the stages of polymerase binding and DNA synthesis, see the individual entries for DNA polymerase III, preinitiation complex, DNA polymerase III, β subunit, DNA polymerase III, τ subunit dimer, DNA polymerase III, core enzyme and their constituent parts.

DNA polymerase III binds a region about 30 nucleotides long upstream of the RNA primer, with the alpha subunit making contact 9 nucleotides upstream and the beta clamp making contact 22 nucleotides upstream [Reems95, Reems94]. The preinitiation complex binds an area larger than this prior to being displaced by the core polymerase [Reems94]. In the presence of DNA polymerase III, RNA primer length is limited to 10 nucleotides, a limitation that is independent of the epsilon-mediated 3' to 5' exonuclease activity [Zechner92].

During polymerization, DNA polymerase III pauses at sites of potential secondary structure [LaDuca83]. The holoenzyme can traverse distances as long as 400 base pairs of duplex DNA to reach the next available 3' end and restart synthesis [ODonnell85]. Such jumps within the same template take 2 to 5 seconds, whereas transfer to a new template takes 30 seconds [Burgers83].

DNA polymerase III is required for several kinds of DNA repair, including some forms of double-strand break repair, fixing hydrogen-peroxide-induced damage and methyl-directed mismatch repair [Motamedi99, Hagensee89, Cooper93]. Mutations that inhibit polymerase III stimulate repeat expansion and lead to lower levels of unsaturation in fatty acids [Morag99, Suzuki98].

UV mutagenesis and gap repair following UV damage to DNA both involve DNA polymerase III [CohenFix94, Tomer96]. The polymerase stalls at pyrimidine photodimers in vitro, but is capable of bypassing such lesions to continue synthesis [Shwartz87, Livneh86]. This bypass activity is stimulated by single-strand binding protein (SSB) but inhibited by the polymerase III beta subunit, which explains the relatively low rate of bypass in vivo [Shwartz87, Shavitt89].

Citations: [Cull95]

Credits:
Last-Curated ? 09-Jan-2006 by Shearer A , SRI International


Sequence Features

Feature Class Location Attached Group Homology Motif Citations Comment
Metal-Binding-Site 401, 403, 555 Mg2+ PDXD
[Pritchard99, Kim97d]
The active-site magnesium ion is coordinated by three aspartate residues (401, 403, 555). Two of them form part of the PDXD active-site motif.
Protein-Binding-Region 920 -> 924    
[Dohrmann05]
This is the beta-binding site. Mutations in this site prevent beta binding, processivity and the use of this polymerase for chromosomal replication.


Gene Local Context (not to scale): ?

Transcription Units:

Notes:

History:
10/20/97 Gene b0184 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10238; confirmed by SwissProt match.


References

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Bridges90: Bridges BA, Bates H (1990). "Mutagenic DNA repair in Escherichia coli. XVIII. Involvement of DNA polymerase III alpha-subunit (DnaE protein) in mutagenesis after exposure to UV light." Mutagenesis 5(1);35-8. PMID: 2184309

Burgers83: Burgers PM, Kornberg A (1983). "The cycling of Escherichia coli DNA polymerase III holoenzyme in replication." J Biol Chem 258(12);7669-75. PMID: 6345527

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

CohenFix94: Cohen-Fix O, Livneh Z (1994). "In vitro UV mutagenesis associated with nucleotide excision-repair gaps in Escherichia coli." J Biol Chem 269(7);4953-8. PMID: 8106470

Cooper93: Cooper DL, Lahue RS, Modrich P (1993). "Methyl-directed mismatch repair is bidirectional." J Biol Chem 268(16);11823-9. PMID: 8389365

Cull95: Cull MG, McHenry CS (1995). "Purification of Escherichia coli DNA polymerase III holoenzyme." Methods Enzymol 262;22-35. PMID: 8594350

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Dohrmann05: Dohrmann PR, McHenry CS (2005). "A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme." J Mol Biol 350(2);228-39. PMID: 15923012

Gao01: Gao D, McHenry CS (2001). "tau binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged tau to determine candidate domains and to assign domain V as the alpha binding domain." J Biol Chem 276(6);4433-40. PMID: 11078743

GOA01: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Hagensee89: Hagensee ME, Moses RE (1989). "Multiple pathways for repair of hydrogen peroxide-induced DNA damage in Escherichia coli." J Bacteriol 171(2);991-5. PMID: 2644241

Helfman76: Helfman WB, Hendler SS, Smith DW (1976). "Escherichia coli DNA polymerases II and III: activation by magnesium or by manganous ions." Biochim Biophys Acta 447(2);175-87. PMID: 788784

Hurwitz74: Hurwitz J, Wickner S (1974). "Involvement of two protein factors and ATP in in vitro DNA synthesis catalyzed by DNA polymerase 3 of Escherichia coli." Proc Natl Acad Sci U S A 71(1);6-10. PMID: 4589895

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Jergic13: Jergic S, Horan NP, Elshenawy MM, Mason CE, Urathamakul T, Ozawa K, Robinson A, Goudsmits JM, Wang Y, Pan X, Beck JL, van Oijen AM, Huber T, Hamdan SM, Dixon NE (2013). "A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode." EMBO J 32(9);1322-33. PMID: 23435564

Jonczyk98: Jonczyk P, Nowicka A, Fijalkowska IJ, Schaaper RM, Ciesla Z (1998). "In vivo protein interactions within the Escherichia coli DNA polymerase III core." J Bacteriol 180(6);1563-6. PMID: 9515927

Kelman98: Kelman Z, Yuzhakov A, Andjelkovic J, O'Donnell M (1998). "Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly." EMBO J 17(8);2436-49. PMID: 9545254

Kim96c: Kim DR, McHenry CS (1996). "Identification of the beta-binding domain of the alpha subunit of Escherichia coli polymerase III holoenzyme." J Biol Chem 271(34);20699-704. PMID: 8702820

Kim96d: Kim DR, McHenry CS (1996). "Biotin tagging deletion analysis of domain limits involved in protein-macromolecular interactions. Mapping the tau binding domain of the DNA polymerase III alpha subunit." J Biol Chem 271(34);20690-8. PMID: 8702819

Kim97d: Kim DR, Pritchard AE, McHenry CS (1997). "Localization of the active site of the alpha subunit of the Escherichia coli DNA polymerase III holoenzyme." J Bacteriol 179(21);6721-8. PMID: 9352922

Kornberg72: Kornberg T, Gefter ML (1972). "Deoxyribonucleic acid synthesis in cell-free extracts. IV. Purification and catalytic properties of deoxyribonucleic acid polymerase III." J Biol Chem 247(17);5369-75. PMID: 4560196

LaDuca83: LaDuca RJ, Fay PJ, Chuang C, McHenry CS, Bambara RA (1983). "Site-specific pausing of deoxyribonucleic acid synthesis catalyzed by four forms of Escherichia coli DNA polymerase III." Biochemistry 22(22);5177-88. PMID: 6360204

Lamers06: Lamers MH, Georgescu RE, Lee SG, O'Donnell M, Kuriyan J (2006). "Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III." Cell 126(5);881-92. PMID: 16959568

Livingston75: Livingston DM, Hinkle DC, Richardson CC (1975). "Deoxyribonucleic acid polymerase III of Escherichia coli. Purification and properties." J Biol Chem 250(2);461-9. PMID: 1089643

Livneh86: Livneh Z (1986). "Mechanism of replication of ultraviolet-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli. Implications for SOS mutagenesis." J Biol Chem 261(20);9526-33. PMID: 2941423

Maki85: Maki H, Kornberg A (1985). "The polymerase subunit of DNA polymerase III of Escherichia coli. II. Purification of the alpha subunit, devoid of nuclease activities." J Biol Chem 260(24);12987-92. PMID: 2997151

Maki87: Maki H, Kornberg A (1987). "Proofreading by DNA polymerase III of Escherichia coli depends on cooperative interaction of the polymerase and exonuclease subunits." Proc Natl Acad Sci U S A 84(13);4389-92. PMID: 3037519

Maki88: Maki S, Kornberg A (1988). "DNA polymerase III holoenzyme of Escherichia coli. III. Distinctive processive polymerases reconstituted from purified subunits." J Biol Chem 263(14);6561-9. PMID: 3283127

Maki88a: Maki S, Kornberg A (1988). "DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the gamma subunit essential for processive synthesis." J Biol Chem 263(14);6555-60. PMID: 3283126

Maki88b: Maki H, Maki S, Kornberg A (1988). "DNA Polymerase III holoenzyme of Escherichia coli. IV. The holoenzyme is an asymmetric dimer with twin active sites." J Biol Chem 263(14);6570-8. PMID: 3283128

McHenry79: McHenry CS, Crow W (1979). "DNA polymerase III of Escherichia coli. Purification and identification of subunits." J Biol Chem 254(5);1748-53. PMID: 368075

Morag99: Morag AS, Saveson CJ, Lovett ST (1999). "Expansion of DNA repeats in Escherichia coli: effects of recombination and replication functions." J Mol Biol 289(1);21-7. PMID: 10339402

Motamedi99: Motamedi MR, Szigety SK, Rosenberg SM (1999). "Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo." Genes Dev 13(21);2889-903. PMID: 10557215

Nusslein76: Nusslein V, Henke S, Johnston LH (1976). "Replication of E. coli duplex DNA in vitro. The separation of the DNA containing fractions of a lysate from the soluble enzymes and their complementation properties." Mol Gen Genet 145(2);183-90. PMID: 778584

ODonnell85: O'Donnell ME, Kornberg A (1985). "Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template." J Biol Chem 260(23);12875-83. PMID: 2413035

Oishi06: Oishi Y, Yunomura S, Kawahashi Y, Doi N, Takashima H, Baba T, Mori H, Yanagawa H (2006). "Escherichia coli proteome chips for detecting protein-protein interactions." Proteomics 6(24);6433-6. PMID: 17109382

Onrust95: Onrust R, Finkelstein J, Turner J, Naktinis V, O'Donnell M (1995). "Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. III. Interface between two polymerases and the clamp loader." J Biol Chem 270(22);13366-77. PMID: 7768938

Ozawa08: Ozawa K, Jergic S, Park AY, Dixon NE, Otting G (2008). "The proofreading exonuclease subunit epsilon of Escherichia coli DNA polymerase III is tethered to the polymerase subunit alpha via a flexible linker." Nucleic Acids Res 36(15);5074-82. PMID: 18663010

Pintacuda06: Pintacuda G, Park AY, Keniry MA, Dixon NE, Otting G (2006). "Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein complexes." J Am Chem Soc 128(11);3696-702. PMID: 16536542

Pritchard99: Pritchard AE, McHenry CS (1999). "Identification of the acidic residues in the active site of DNA polymerase III." J Mol Biol 285(3);1067-80. PMID: 9887268

Rajagopala12: Rajagopala SV, Sikorski P, Caufield JH, Tovchigrechko A, Uetz P (2012). "Studying protein complexes by the yeast two-hybrid system." Methods 58(4);392-9. PMID: 22841565

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Reems94: Reems JA, McHenry CS (1994). "Escherichia coli DNA polymerase III holoenzyme footprints three helical turns of its primer." J Biol Chem 269(52);33091-6. PMID: 7806536

Reems95: Reems JA, Wood S, McHenry CS (1995). "Escherichia coli DNA polymerase III holoenzyme subunits alpha, beta, and gamma directly contact the primer-template." J Biol Chem 270(10);5606-13. PMID: 7890680

ReyesLamothe10: Reyes-Lamothe R, Sherratt DJ, Leake MC (2010). "Stoichiometry and architecture of active DNA replication machinery in Escherichia coli." Science 328(5977);498-501. PMID: 20413500

Rhodius05: Rhodius VA, Suh WC, Nonaka G, West J, Gross CA (2005). "Conserved and variable functions of the sigmaE stress response in related genomes." PLoS Biol 4(1);e2. PMID: 16336047

Sharif90: Sharif F, Bridges BA (1990). "Mutagenic DNA repair in Escherichia coli. XVII. Effect of temperature-sensitive DnaE proteins on the induction of streptomycin-resistant mutations by UV light." Mutagenesis 5(1);31-4. PMID: 2184308

Shavitt89: Shavitt O, Livneh Z (1989). "The beta subunit modulates bypass and termination at UV lesions during in vitro replication with DNA polymerase III holoenzyme of Escherichia coli." J Biol Chem 264(19);11275-81. PMID: 2661556

Shwartz87: Shwartz H, Livneh Z (1987). "Dynamics of termination during in vitro replication of ultraviolet-irradiated DNA with DNA polymerase III holoenzyme of Escherichia coli." J Biol Chem 262(22);10518-23. PMID: 2956258

Stukenberg91: Stukenberg PT, Studwell-Vaughan PS, O'Donnell M (1991). "Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme." J Biol Chem 266(17);11328-34. PMID: 2040637

Suzuki98: Suzuki E, Kondo T, Makise M, Mima S, Sakamoto K, Tsuchiya T, Mizushima T (1998). "Alteration in levels of unsaturated fatty acids in mutants of Escherichia coli defective in DNA replication." Biol Pharm Bull 21(7);657-61. PMID: 9703244

Tomer96: Tomer G, Cohen-Fix O, O'Donnell M, Goodman M, Livneh Z (1996). "Reconstitution of repair-gap UV mutagenesis with purified proteins from Escherichia coli: a role for DNA polymerases III and II." Proc Natl Acad Sci U S A 93(4);1376-80. PMID: 8643639

Toste13: Toste Rego A, Holding AN, Kent H, Lamers MH (2013). "Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair." EMBO J 32(9);1334-43. PMID: 23549287

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

Van01: Van Dyk TK, DeRose EJ, Gonye GE (2001). "LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains." J Bacteriol 183(19);5496-505. PMID: 11544210

Welch82: Welch MM, McHenry CS (1982). "Cloning and identification of the product of the dnaE gene of Escherichia coli." J Bacteriol 152(1);351-6. PMID: 6288664

Wieczorek06: Wieczorek A, McHenry CS (2006). "The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit." J Biol Chem 281(18):12561-7. PMID: 16517598

Witkin92: Witkin EM, Roegner-Maniscalco V (1992). "Overproduction of DnaE protein (alpha subunit of DNA polymerase III) restores viability in a conditionally inviable Escherichia coli strain deficient in DNA polymerase I." J Bacteriol 174(12);4166-8. PMID: 1597430

Zechner92: Zechner EL, Wu CA, Marians KJ (1992). "Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. III. A polymerase-primase interaction governs primer size." J Biol Chem 267(6);4054-63. PMID: 1531480


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Fri Dec 19, 2014, biocyc14.