Escherichia coli K-12 substr. MG1655 Enzyme: protein disulfide oxidoreductase - DsbAreduced

Gene: dsbA Accession Numbers: EG11297 (EcoCyc), b3860, ECK3852

Synonyms: dsf, iarA, ppfA, DsbAreduced

Regulation Summary Diagram: ?

Regulation summary diagram for dsbA

Alternative forms of protein disulfide oxidoreductase - DsbAreduced: protein disulfide oxidoreductase - DsbAoxidised

DsbA is a periplasmic disulfide bond forming catalyst in E. coli K-12. DsbA contains a redox active disulfide bond (Cys30-Cys33) that is catalytically transferred to a diverse range of folding proteins in the periplasm. DsbA requires DsbB for reoxidation [Kishigami95, Guilhot95].

Purified DsbA catalyses the formation of disulfide bonds in in vitro translated alkaline phosphatase (PhoA) [Akiyama92]. Purified DsbA can reduce the disulfide bonds of insulin in vitro [Bardwell91]. dsbA mutants produce alkaline phosphatase, β-lactamase and OmpA lacking disulfide bonds [Bardwell91, Kamitani92]. A dsbA null mutant is defective in the synthesis of anaerobically induced c-type cytochromes [Metheringham95]. dsbA is non essential in E. coli K-12 [Bardwell91].

The intramolecular disulfide bond of DsbA is very reactive and thus disulfide-bonded DsbA is a good oxidant [Zapun93]. Reduced DsbA is more stable than oxidised DsbA and the energetic difference drives disulfide transfer [Zapun93, Wunderlich93]. The two central residues within the redox active site are critical in determining redox potential of DsbA [Grauschopf95].

Oxidative folding is thought to occur via formation of intermediate mixed disulfide complexes between DsbA and its substrates. A DsbA mutant has been identified which slows down the resolution of DsbA/substrate compexes and allows characterisation of these intermediates [Kadokura04]. Disulfide linked complexes formed between DsbA and newly synthesized PhoA have been identified [Kadokura09].

DsbA contains a thioredoxin fold with an α-helical domain insertion [Martin93a]. The crystal structure of DsbA in complex with a peptide residue from the Shigella flexneri SigA autotransporter protein has been determined at 1.9Å resolution [Paxman09].

dsbA is one of a network of genes believed to play a role in promoting the stress-induced mutagenesis (SIM) response of E. coli K-12 [Al12].

Reviews: [Bardwell94, Inaba09, Shouldice11]

Citations: [Fabianek00, Zapun94]

Gene Citations: [Belin94]

Locations: periplasmic space

Map Position: [4,041,441 -> 4,042,067] (87.11 centisomes, 314°)
Length: 627 bp / 208 aa

Molecular Weight of Polypeptide: 23.105 kD (from nucleotide sequence), 21.1 kD (experimental) [Wunderlich93 ]

pI: 6.31

Isozyme Sequence Similarity:
DsbC monomer: NO

Unification Links: ASAP:ABE-0012606 , CGSC:34063 , DIP:DIP-35886N , EchoBASE:EB1274 , EcoGene:EG11297 , EcoliWiki:b3860 , Mint:MINT-1247943 , ModBase:P0AEG4 , OU-Microarray:b3860 , PortEco:dsbA , PR:PRO_000022479 , Pride:P0AEG4 , Protein Model Portal:P0AEG4 , RefSeq:NP_418297 , RegulonDB:EG11297 , SMR:P0AEG4 , String:511145.b3860 , Swiss-Model:P0AEG4 , UniProt:P0AEG4

Relationship Links: InterPro:IN-FAMILY:IPR001853 , InterPro:IN-FAMILY:IPR012336 , InterPro:IN-FAMILY:IPR017937 , InterPro:IN-FAMILY:IPR023205 , PDB:Structure:1A23 , PDB:Structure:1A24 , PDB:Structure:1A2J , PDB:Structure:1A2L , PDB:Structure:1A2M , PDB:Structure:1AC1 , PDB:Structure:1ACV , PDB:Structure:1BQ7 , PDB:Structure:1DSB , PDB:Structure:1FVJ , PDB:Structure:1FVK , PDB:Structure:1TI1 , PDB:Structure:1U3A , PDB:Structure:1UN2 , PDB:Structure:2B3S , PDB:Structure:2B6M , PDB:Structure:2HI7 , PDB:Structure:2LEG , PDB:Structure:2ZUP , PDB:Structure:3E9J , Pfam:IN-FAMILY:PF01323 , Prosite:IN-FAMILY:PS00194 , Prosite:IN-FAMILY:PS51352

In Reactions of unknown directionality:

Not in pathways:
DsbAoxidised[periplasmic space] + 2 D-cysteine[periplasmic space] = D-cystine[periplasmic space] + DsbAreduced[periplasmic space]
DsbAoxidised[periplasmic space] + 2 L-cysteine[periplasmic space] = L-cystine[periplasmic space] + DsbAreduced[periplasmic space]
DsbBoxidised[periplasmic space] + DsbAreduced[periplasmic space] = DsbAoxidised[periplasmic space] + DsbBreduced[periplasmic space]

Gene-Reaction Schematic: ?

Gene-Reaction Schematic

Genetic Regulation Schematic: ?

Genetic regulation schematic for dsbA

GO Terms:

Biological Process: GO:0006457 - protein folding Inferred from experiment [Bardwell91]
GO:0055114 - oxidation-reduction process Inferred from experiment Inferred by computational analysis [GOA01, Metheringham95, Bardwell91]
GO:0071236 - cellular response to antibiotic Inferred from experiment [Missiakas95]
GO:0045454 - cell redox homeostasis Inferred by computational analysis [GOA01]
Molecular Function: GO:0003756 - protein disulfide isomerase activity Inferred from experiment [Bardwell91]
GO:0005515 - protein binding Inferred from experiment [Malojcic08, Inaba06, Kadokura09]
GO:0015035 - protein disulfide oxidoreductase activity Inferred from experiment Inferred by computational analysis [GOA01, Metheringham95, Bardwell91]
Cellular Component: GO:0030288 - outer membrane-bounded periplasmic space Inferred from experiment Inferred by computational analysis [DiazMejia09, Han14, LopezCampistrou05, Bardwell91]
GO:0042597 - periplasmic space Inferred by computational analysis [UniProtGOA11a, UniProtGOA11]

MultiFun Terms: cell processes adaptations
information transfer protein related chaperoning, repair (refolding)

Essentiality data for dsbA knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox Yes 37 Aerobic 7   Yes [Baba06, Comment 1]
M9 medium with 1% glycerol Yes 37 Aerobic 7.2 0.35 Yes [Joyce06, Comment 2]
MOPS medium with 0.4% glucose Yes 37 Aerobic 7.2 0.22 Yes [Baba06, Comment 1]
Yes [Feist07, Comment 3]

Last-Curated ? 01-Jul-2009 by Mackie A , Macquarie University

Enzymatic reaction of: protein disulfide oxidoreductase

Synonyms: thiol:disulfide interchange protein

a protein with reduced sulfide groups[periplasmic space] <=> a protein with oxidized disulfide bonds[periplasmic space]

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the direction of enzyme catalysis.

This reaction is reversible. [Wunderlich93]

Sequence Features

Protein sequence of protein disulfide oxidoreductase - DsbAreduced with features indicated

Feature Class Location Citations Comment
Signal-Sequence 1 -> 19
[Zapun93, Wilkins98, Link97, UniProt11a]
Conserved-Region 20 -> 150
UniProt: Thioredoxin;
Chain 20 -> 208
UniProt: Thiol:disulfide interchange protein dsbA;
Disulfide-Bond-Site 49, 52
[Guddat97, UniProt11a]
UniProt: Redox-active.

Gene Local Context (not to scale): ?

Gene local context diagram

Transcription Units:

Transcription-unit diagram

Transcription-unit diagram


10/20/97 Gene b3860 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG11297; confirmed by SwissProt match.


Akiyama92: Akiyama Y, Kamitani S, Kusukawa N, Ito K (1992). "In vitro catalysis of oxidative folding of disulfide-bonded proteins by the Escherichia coli dsbA (ppfA) gene product." J Biol Chem 1992;267(31);22440-5. PMID: 1429594

Al12: Al Mamun AA, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM (2012). "Identity and function of a large gene network underlying mutagenic repair of DNA breaks." Science 338(6112);1344-8. PMID: 23224554

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Bardwell91: Bardwell JC, McGovern K, Beckwith J (1991). "Identification of a protein required for disulfide bond formation in vivo." Cell 67(3);581-9. PMID: 1934062

Bardwell94: Bardwell JC (1994). "Building bridges: disulphide bond formation in the cell." Mol Microbiol 1994;14(2);199-205. PMID: 7830566

Belin94: Belin P, Boquet PL (1994). "The Escherichia coli dsbA gene is partly transcribed from the promoter of a weakly expressed upstream gene." Microbiology 140 ( Pt 12);3337-48. PMID: 7881552

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Fabianek00: Fabianek RA, Hennecke H, Thony-Meyer L (2000). "Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli." FEMS Microbiol Rev 2000;24(3);303-16. PMID: 10841975

Feist07: Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007). "A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information." Mol Syst Biol 3;121. PMID: 17593909

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Grauschopf95: Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell JC (1995). "Why is DsbA such an oxidizing disulfide catalyst?." Cell 1995;83(6);947-55. PMID: 8521518

Guddat97: Guddat LW, Bardwell JC, Glockshuber R, Huber-Wunderlich M, Zander T, Martin JL (1997). "Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability." Protein Sci 6(9);1893-900. PMID: 9300489

Guilhot95: Guilhot C, Jander G, Martin NL, Beckwith J (1995). "Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA." Proc Natl Acad Sci U S A 1995;92(21);9895-9. PMID: 7568240

Han14: Han MJ, Kim JY, Kim JA (2014). "Comparison of the large-scale periplasmic proteomes of the Escherichia coli K-12 and B strains." J Biosci Bioeng 117(4);437-42. PMID: 24140104

Inaba06: Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, Ito K (2006). "Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation." Cell 127(4);789-801. PMID: 17110337

Inaba09: Inaba K (2009). "Disulfide bond formation system in Eschericia coli." J Biochem 146(5):591-7. PMID: 19567379

Joyce06: Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006). "Experimental and computational assessment of conditionally essential genes in Escherichia coli." J Bacteriol 188(23);8259-71. PMID: 17012394

Kadokura04: Kadokura H, Tian H, Zander T, Bardwell JC, Beckwith J (2004). "Snapshots of DsbA in action: detection of proteins in the process of oxidative folding." Science 303(5657);534-7. PMID: 14739460

Kadokura09: Kadokura H, Beckwith J (2009). "Detecting folding intermediates of a protein as it passes through the bacterial translocation channel." Cell 138(6);1164-73. PMID: 19766568

Kamitani92: Kamitani S, Akiyama Y, Ito K (1992). "Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme." EMBO J 11(1);57-62. PMID: 1740115

Kishigami95: Kishigami S, Kanaya E, Kikuchi M, Ito K (1995). "DsbA-DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA." J Biol Chem 1995;270(29);17072-4. PMID: 7615498

Link97: Link AJ, Robison K, Church GM (1997). "Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12." Electrophoresis 18(8);1259-313. PMID: 9298646

LopezCampistrou05: Lopez-Campistrous A, Semchuk P, Burke L, Palmer-Stone T, Brokx SJ, Broderick G, Bottorff D, Bolch S, Weiner JH, Ellison MJ (2005). "Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth." Mol Cell Proteomics 4(8);1205-9. PMID: 15911532

Malojcic08: Malojcic G, Owen RL, Grimshaw JP, Glockshuber R (2008). "Preparation and structure of the charge-transfer intermediate of the transmembrane redox catalyst DsbB." FEBS Lett 582(23-24);3301-7. PMID: 18775700

Martin93a: Martin JL, Bardwell JC, Kuriyan J (1993). "Crystal structure of the DsbA protein required for disulphide bond formation in vivo." Nature 365(6445);464-8. PMID: 8413591

Metheringham95: Metheringham R, Griffiths L, Crooke H, Forsythe S, Cole J (1995). "An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12." Arch Microbiol 1995;164(4);301-7. PMID: 7487336

Missiakas95: Missiakas D, Schwager F, Raina S (1995). "Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli." EMBO J 1995;14(14);3415-24. PMID: 7628442

Paxman09: Paxman JJ, Borg NA, Horne J, Thompson PE, Chin Y, Sharma P, Simpson JS, Wielens J, Piek S, Kahler CM, Sakellaris H, Pearce M, Bottomley SP, Rossjohn J, Scanlon MJ (2009). "The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes." J Biol Chem 284(26);17835-45. PMID: 19389711

Shouldice11: Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL (2011). "Structure and function of DsbA, a key bacterial oxidative folding catalyst." Antioxid Redox Signal 14(9);1729-60. PMID: 21241169

UniProt09: UniProt Consortium (2009). "UniProt version 15.8 released on 2009-10-01 00:00:00." Database.

UniProt11a: UniProt Consortium (2011). "UniProt version 2011-06 released on 2011-06-30 00:00:00." Database.

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

Wilkins98: Wilkins MR, Gasteiger E, Tonella L, Ou K, Tyler M, Sanchez JC, Gooley AA, Walsh BJ, Bairoch A, Appel RD, Williams KL, Hochstrasser DF (1998). "Protein identification with N and C-terminal sequence tags in proteome projects." J Mol Biol 278(3);599-608. PMID: 9600841

Wunderlich93: Wunderlich M, Jaenicke R, Glockshuber R (1993). "The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form." J Mol Biol 233(4);559-66. PMID: 8411164

Zapun93: Zapun A, Bardwell JC, Creighton TE (1993). "The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo." Biochemistry 32(19);5083-92. PMID: 8494885

Zapun94: Zapun A, Cooper L, Creighton TE (1994). "Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo." Biochemistry 33(7);1907-14. PMID: 8110795

Other References Related to Gene Regulation

Danese97: Danese PN, Silhavy TJ (1997). "The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli." Genes Dev 11(9);1183-93. PMID: 9159399

Pogliano97: Pogliano J, Lynch AS, Belin D, Lin EC, Beckwith J (1997). "Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system." Genes Dev 11(9);1169-82. PMID: 9159398

Raivio13: Raivio TL, Leblanc SK, Price NL (2013). "The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity." J Bacteriol 195(12);2755-67. PMID: 23564175

Yamamoto06: Yamamoto K, Ishihama A (2006). "Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli." Biosci Biotechnol Biochem 70(7);1688-95. PMID: 16861804

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 19.0 on Wed Oct 7, 2015, biocyc14.