Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Compound: NAD+

Synonyms: NAD+, beta-nicotinamide adenine dinucleotide, coenzyme I, diphosphopyridine nucleotide, diphosphopyridine nucleotide oxidized, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide oxidized, NAD-oxidized, NAD-ox, DPN+, DPN-ox, DPN, β-nicotinamide adenine dinucleotide, NAD, β-NAD+

Superclasses: a nucleic acid component a nucleotide a dinucleotide a dinucleotide electron carrier NAD(P)+
a nucleic acid component a nucleotide a dinucleotide electron carrier NAD(P)+
a nucleic acid component an oligonucleotide a dinucleotide a dinucleotide electron carrier NAD(P)+
a redox electron carrier NAD(P)+

Summary:
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated derivative, nicotinamide adenine dinucleotide phosphate (NADP) are two of the most important coenzymes in redox reactions in the cell. Generally, NAD is involved in catabolic reactions, while NADP is involved in anabolic reactions. Because of the positive charge on the nitrogen atom in the nicotinamide ring, the oxidized forms of these compounds are often depicted as NAD+ and NADP+, respectively.

Chemical Formula: C21H26N7O14P2

Molecular Weight: 662.42 Daltons

Monoisotopic Molecular Weight: 664.1169466645999 Daltons

SMILES: C1(C(=CC=C[N+]=1C5(OC(COP(=O)([O-])OP(=O)([O-])OCC2(OC(C(O)C(O)2)N4(C=NC3(C(N)=NC=NC=34))))C(O)C(O)5))C(N)=O)

InChI: InChI=1S/C21H27N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-10)27-3-1-2-9(4-27)18(23)33/h1-4,7-8,10-11,13-16,20-21,29-32H,5-6H2,(H5-,22,23,24,25,33,34,35,36,37)/p-1/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1

InChIKey: InChIKey=BAWFJGJZGIEFAR-NNYOXOHSSA-M

Unification Links: CAS:53-84-9 , ChEBI:57540 , ChemSpider:10239196 , HMDB:HMDB00902 , IAF1260:33480 , KEGG:C00003 , MetaboLights:MTBLC57540 , PubChem:15938971

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -605.119

Reactions known to consume the compound:

2,3-dihydroxybenzoate biosynthesis :
(2S,3S)-2,3-dihydroxy-2,3-dihydrobenzoate + NAD+ → 2,3-dihydroxybenzoate + NADH + H+

2-oxoglutarate decarboxylation to succinyl-CoA :
a [2-oxoglutarate dehydrogenase E2 protein] N6-dihydrolipoyl-L-lysine + NAD+ → a [2-oxoglutarate dehydrogenase E2 protein] N6-lipoyl-L-lysine + NADH + H+

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate :
3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate + NAD+ → 3-(2,3-dihydroxyphenyl)propanoate + NADH + H+

4-aminobutyrate degradation :
succinate semialdehyde + NAD+ + H2O → succinate + NADH + 2 H+

adenosine nucleotides degradation II :
hypoxanthine + NAD+ + H2O → xanthine + NADH + H+
xanthine + NAD+ + H2O → urate + NADH + H+

allantoin degradation IV (anaerobic) :
S-ureidoglycolate + NAD+ → oxalurate + NADH + H+

arginine degradation II (AST pathway) :
N2-succinyl-L-glutamate 5-semialdehyde + NAD+ + H2O → N2-succinylglutamate + NADH + 2 H+

cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate :
(2E)-3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)prop-2-enoate + NAD+ → 2,3-dihydroxy-trans-cinnamate + NADH + H+

D-arabinose degradation I , ethylene glycol degradation :
glycolaldehyde + NAD+ + H2O → glycolate + NADH + 2 H+

D-malate degradation :
(R)-malate + NAD+ → CO2 + pyruvate + NADH

fatty acid β-oxidation I :
a (3S)-3-hydroxyacyl-CoA + NAD+ ↔ a 3-oxoacyl-CoA + NADH + H+

gluconeogenesis I :
(S)-malate + NAD+ → CO2 + pyruvate + NADH

glycine betaine biosynthesis I (Gram-negative bacteria) :
betaine aldehyde + NAD+ + H2O → glycine betaine + NADH + 2 H+

guanosine nucleotides degradation III :
xanthine + NAD+ + H2O → urate + NADH + H+

guanosine ribonucleotides de novo biosynthesis :
IMP + NAD+ + H2O → XMP + NADH + H+

histidine biosynthesis :
histidinal + NAD+ + H2O → L-histidine + NADH + 2 H+
histidinol + NAD+ → histidinal + NADH + H+

L-galactonate degradation :
aldehydo-L-galactonate + NAD+ → D-tagaturonate + NADH + H+

L-lactaldehyde degradation (aerobic) :
(S)-lactaldehyde + NAD+ + H2O → (S)-lactate + NADH + 2 H+

N10-formyl-tetrahydrofolate biosynthesis :
glycine + a tetrahydrofolate + NAD+ → a 5,10-methylene-tetrahydrofolate + ammonium + CO2 + NADH

NAD phosphorylation and dephosphorylation I :
ATP + NAD+ → ADP + NADP+ + H+

NAD salvage pathway I , NAD salvage pathway II :
NAD+ + H2O → β-nicotinamide D-ribonucleotide + AMP + 2 H+

polymyxin resistance :
UDP-α-D-glucuronate + NAD+ → UDP-β-L-threo-pentapyranos-4-ulose + CO2 + NADH

proline degradation :
L-glutamate-5-semialdehyde + NAD+ + H2O → L-glutamate + NADH + 2 H+

putrescine degradation I :
4-aminobutanal + NAD+ + H2O → 4-aminobutanoate + NADH + 2 H+

pyridoxal 5'-phosphate biosynthesis I :
4-phospho-hydroxy-L-threonine + NAD+(2S)-2-amino-3-oxo-4-phosphonooxybutanoate + NADH + H+
D-erythrose 4-phosphate + NAD+ + H2O → erythronate-4-phosphate + NADH + 2 H+
erythronate-4-phosphate + NAD+ → 2-oxo-3-hydroxy-4-phosphobutanoate + NADH + H+

pyruvate decarboxylation to acetyl CoA :
a [pyruvate dehydrogenase E2 protein] N6-dihydrolipoyl-L-lysine + NAD+ → a [pyruvate dehydrogenase E2 protein] N6-lipoyl-L-lysine + NADH + H+

superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass :
pyruvate + coenzyme A + NAD+ → acetyl-CoA + CO2 + NADH

TCA cycle I (prokaryotic) :
2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH

threonine degradation II , threonine degradation III (to methylglyoxal) :
L-threonine + NAD+ → 2-amino-3-oxobutanoate + NADH + 2 H+

tyrosine biosynthesis I :
prephenate + NAD+ → 4-hydroxyphenylpyruvate + CO2 + NADH

UDP-α-D-glucuronate biosynthesis (from UDP-glucose) :
UDP-α-D-glucose + 2 NAD+ + H2O → UDP-α-D-glucuronate + 2 NADH + 3 H+

UDP-N-acetyl-α-D-mannosaminouronate biosynthesis :
UDP-N-acetyl-α-D-mannosamine + 2 NAD+ + H2O → UDP-N-acetyl-α-D-mannosaminouronate + 2 NADH + 3 H+

Not in pathways:
NAD+ + H2O ↔ ADP-D-ribose + nicotinamide + H+
(S)-1-pyrroline-5-carboxylate + NAD+ + 2 H2O → L-glutamate + NADH + H+
(deoxynucleotides)(m) + (deoxynucleotides)(n) + NAD+ → (deoxynucleotides)(n+m) + β-nicotinamide D-ribonucleotide + AMP
a [protein] acetyl-L-lysine + NAD+ + H2O → a [protein]-L-lysine + 3''-O-acetyl-ADP-ribose + nicotinamide
CheY-ac + NAD+ + H2O → CheY + 3''-O-acetyl-ADP-ribose + nicotinamide
3-hydroxypropionaldehyde + NAD+ + H2O → 3-hydroxypropanoate + NADH + 2 H+

allantoin degradation IV (anaerobic) :
S-ureidoglycolate + NAD(P)+ → oxalurate + NAD(P)H + H+

pentose phosphate pathway (oxidative branch) I :
D-gluconate 6-phosphate + NAD(P)+ → D-ribulose 5-phosphate + CO2 + NAD(P)H

putrescine degradation II :
4-(γ-glutamylamino)butanal + NAD(P)+ + H2O → 4-(γ-L-glutamylamino)butanoate + NAD(P)H + 2 H+


an oligonucleotide + H2O → n a nucleoside 5'-monophosphate

Reactions known to produce the compound:

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate :
3-phenylpropanoate + NADH + oxygen + H+ → 3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate + NAD+
3-(3-hydroxyphenyl)propionate + NADH + H+ + oxygen → 3-(2,3-dihydroxyphenyl)propanoate + NAD+ + H2O

8-amino-7-oxononanoate biosynthesis I :
a glutaryl-[acp] methyl ester + NAD+ ← an enoylglutaryl-[acp] methyl ester + NADH + H+
a pimeloyl-[acp] methyl ester + NAD+ ← an enoylpimeloyl-[acp] methyl ester + NADH + H+

cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate :
3-hydroxy-trans-cinnamate + NADH + oxygen + H+ → 2,3-dihydroxy-trans-cinnamate + NAD+ + H2O
trans-cinnamate + NADH + oxygen + H+ → (2E)-3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)prop-2-enoate + NAD+

cis-dodecenoyl biosynthesis :
a cis5-dodecenoyl-[acp] + NAD+ ← a trans3-cis5-dodecenoyl-[acp] + NADH + H+

cis-vaccenate biosynthesis :
a cis-vaccen-2-enoyl-[acp] + NADH + H+ → a cis-vaccenoyl-[acp] + NAD+

fatty acid elongation -- saturated :
a 2,3,4-saturated fatty acyl-[acp] + NAD+ ← a trans-2-enoyl-[acyl-carrier protein] + NADH + H+

L-ascorbate degradation II (bacterial, aerobic) :
3-keto-L-gulonate + NAD+ ← 2,3-dioxo-L-gulonate + NADH + H+

mixed acid fermentation :
(R)-lactate + NAD+ ← pyruvate + NADH + H+

NAD biosynthesis I (from aspartate) :
ATP + nicotinate adenine dinucleotide + L-glutamine + H2O → AMP + L-glutamate + NAD+ + diphosphate + H+
ammonium + ATP + nicotinate adenine dinucleotide → AMP + NAD+ + diphosphate + H+

NAD phosphorylation and dephosphorylation I :
NADH + NADP+ + H+[periplasmic space] → NADPH + NAD+ + H+[cytosol]
NADP+ + H2O → NAD+ + phosphate

NAD salvage pathway I :
ATP + nicotinate adenine dinucleotide + L-glutamine + H2O → AMP + L-glutamate + NAD+ + diphosphate + H+

NAD salvage pathway II :
NADP+ + H2O → NAD+ + phosphate

NAD salvage pathway III :
β-nicotinamide D-ribonucleotide + ATP + H+NAD+ + diphosphate

NADH to cytochrome bd oxidase electron transport II , NADH to cytochrome bo oxidase electron transfer II :
NADH + an ubiquinone[inner membrane] + H+NAD+ + an ubiquinol[inner membrane]

NADH to dimethyl sulfoxide electron transfer , NADH to fumarate electron transfer , NADH to trimethylamine N-oxide electron transfer , nitrate reduction VIII (dissimilatory) :
NADH + a menaquinone[inner membrane] + 5 H+NAD+ + a menaquinol[inner membrane] + 4 H+[periplasmic space]

palmitate biosynthesis II (bacteria and plants) :
a butyryl-[acp] + NAD+ ← a crotonyl-[acp] + NADH + H+
an octanoyl-[acp] + NAD+ ← a trans oct-2-enoyl-[acp] + NADH + H+
a hexanoyl-[acyl-carrier-protein] + NAD+ ← a trans hex-2-enoyl-[acp] + NADH + H+
a decanoyl-[acp] + NAD+ ← a trans2-decenoyl-[acp] + NADH + H+
a dodecanoyl-[acp] + NAD+ ← a trans dodec-2-enoyl-[acp] + NADH + H+
a myristoyl-[acp] + NAD+ ← a trans tetradec-2-enoyl-[acp] + NADH + H+
a palmitoyl-[acp] + NAD+ ← a trans hexadecenoyl-[acp] + NADH + H+

palmitoleate biosynthesis I :
a cis7-tetradecenoyl-[acp] + NAD+ ← a trans3-cis7-tetradecenoyl-[acp] + NADH + H+
a palmitoleoyl-[acp] + NAD+ ← a trans3-cis9-hexadecenoyl-[acp] + NADH + H+

sulfoglycolysis :
2,3-dihydroxypropane 1-sulfonate + NAD+ ← sulfolactaldehyde + NADH + H+

Not in pathways:
trimethylamine N-oxide + NADH + 2 H+ → trimethylamine + NAD+ + H2O
(Z)-3-ureidoacrylate peracid + NADH → 3-ureidoacrylate + NAD+ + H2O
ammonium + 3 NAD+ + 2 H2O ← nitrite + 3 NADH + 5 H+
(R)-1-aminopropan-2-ol + NAD+ ← aminoacetone + NADH + H+
an alcohol + NAD+ + H2O ← an organic hydroperoxide + NADH + H+

CDP-diacylglycerol biosynthesis I , CDP-diacylglycerol biosynthesis II :
sn-glycerol 3-phosphate + NAD(P)+ ← dihydroxyacetone phosphate + NAD(P)H + H+

chorismate biosynthesis from 3-dehydroquinate :
shikimate + NAD(P)+ ← 3-dehydroshikimate + NAD(P)H + H+

D-galactarate degradation I , D-glucarate degradation I :
D-glycerate + NAD(P)+ ← tartronate semialdehyde + NAD(P)H + H+

homoserine biosynthesis :
L-homoserine + NAD(P)+ ← L-aspartate-semialdehyde + NAD(P)H + H+

methylerythritol phosphate pathway I :
dimethylallyl diphosphate + NAD(P)+ + H2O ← 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate + NAD(P)H + H+
isopentenyl diphosphate + NAD(P)+ + H2O ← 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate + NAD(P)H + H+

proline biosynthesis I :
L-proline + NAD(P)+ ← (S)-1-pyrroline-5-carboxylate + NAD(P)H + 2 H+


a quinone + NAD(P)H + H+ → a quinol + NAD(P)+
an oxidized nitroaromatic compound + NAD(P)H → a reduced nitroaromatic compound + NAD(P)+
Cr6+ + 2 NAD(P)H + oxygen → Cr3+ + hydrogen peroxide + 2 NAD(P)+
an oxidized flavoprotein (FAD) + NAD(P)H → a reduced flavoprotein (FADH2) + NAD(P)+
an oxidized flavoprotein (FMN) + NAD(P)H → a reduced flavoprotein (FMNH2) + NAD(P)+
2 nitric oxide + NAD(P)H + 2 oxygen → 2 nitrate + NAD(P)+ + H+

Reactions known to both consume and produce the compound:

2'-deoxy-α-D-ribose 1-phosphate degradation , 2-oxopentenoate degradation , threonine degradation IV :
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

D-fructuronate degradation :
D-mannonate + NAD+ ↔ D-fructuronate + NADH + H+

D-galacturonate degradation I :
D-altronate + NAD+ ↔ D-tagaturonate + NADH + H+

D-sorbitol degradation II :
D-sorbitol 6-phosphate + NAD+ ↔ D-fructose 6-phosphate + NADH + H+

ethanol degradation I :
ethanol + NAD+ ↔ acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

ethylene glycol degradation :
ethylene glycol + NAD+ ↔ glycolaldehyde + NADH + H+

galactitol degradation :
galactitol 1-phosphate + NAD+ ↔ D-tagatofuranose 6-phosphate + NADH + H+

gluconeogenesis I :
D-glyceraldehyde 3-phosphate + NAD+ + phosphate ↔ 1,3-bisphospho-D-glycerate + NADH + H+
(S)-malate + NAD+ ↔ oxaloacetate + NADH + H+

glycerol degradation V :
glycerol + NAD+ ↔ dihydroxyacetone + NADH + H+

glycine cleavage :
a [glycine-cleavage complex H protein] N6-dihydrolipoyl-L-lysine + NAD+ ↔ a [glycine-cleavage complex H protein] N6-lipoyl-L-lysine + NADH + H+

glycolate and glyoxylate degradation I :
D-glycerate + NAD+ ↔ tartronate semialdehyde + NADH + H+

glycolysis I (from glucose-6P) , glycolysis II (from fructose-6P) :
D-glyceraldehyde 3-phosphate + NAD+ + phosphate ↔ 1,3-bisphospho-D-glycerate + NADH + H+

glyoxylate cycle , TCA cycle I (prokaryotic) :
(S)-malate + NAD+ ↔ oxaloacetate + NADH + H+

L-lactaldehyde degradation (anaerobic) :
(S)-propane-1,2-diol + NAD+ ↔ (S)-lactaldehyde + NADH + H+

leucine biosynthesis :
(2R,3S)-3-isopropylmalate + NAD+ ↔ (2S)-2-isopropyl-3-oxosuccinate + NADH + H+

mannitol degradation I :
D-mannitol 1-phosphate + NAD+ ↔ β-D-fructofuranose 6-phosphate + NADH + H+

methylglyoxal degradation III :
(S)-propane-1,2-diol + NAD+ ↔ acetol + NADH + H+

mixed acid fermentation :
ethanol + NAD+ ↔ acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+
(S)-malate + NAD+ ↔ oxaloacetate + NADH + H+

N10-formyl-tetrahydrofolate biosynthesis :
an N5-methyl-tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + NADH + H+

NADH to cytochrome bd oxidase electron transfer I , NADH to cytochrome bo oxidase electron transfer I :
NADH + an ubiquinone[inner membrane] + 5 H+NAD+ + an ubiquinol[inner membrane] + 4 H+[periplasmic space]

phenylacetate degradation I (aerobic) :
3-hydroxyadipyl-CoA + NAD+ ↔ 3-oxoadipyl-CoA + NADH + H+

phenylethylamine degradation I :
phenylacetaldehyde + NAD+ + H2O ↔ phenylacetate + NADH + 2 H+

serine biosynthesis :
3-phospho-D-glycerate + NAD+ ↔ 3-phospho-hydroxypyruvate + NADH + H+

siroheme biosynthesis :
precorrin-2 + NAD+ ↔ sirohydrochlorin + NADH + 2 H+

Not in pathways:
D-gluconate + NAD+ ↔ 5-dehydro-D-gluconate + NADH + H+
dTDP-β-L-rhamnose + NAD+ ↔ dTDP-4-dehydro-6-deoxy-α-D-glucopyranose + NADH + H+
a primary alcohol + NAD+ ↔ an aldehyde + NADH + H+
5,6-dihydrothymine + NAD+ ↔ thymine + NADH + H+
4-hydroxybutanoate + NAD+ ↔ succinate semialdehyde + NADH + H+
2-hydroxyglutarate + NAD+ ↔ 2-oxoglutarate + NADH + H+
5,6-dihydrouracil + NAD+ ↔ uracil + NADH + H+
NADPH + NAD+ ↔ NADH + NADP+

formaldehyde oxidation II (glutathione-dependent) :
S-hydroxymethylglutathione + NAD(P)+S-formylglutathione + NAD(P)H + H+

L-idonate degradation :
L-idonate + NAD(P)+ ↔ 5-dehydro-D-gluconate + NAD(P)H + H+
D-gluconate + NAD(P)+ ↔ 5-dehydro-D-gluconate + NAD(P)H + H+


FMNH2 + NAD(P)+ ↔ FMN + NAD(P)H + 2 H+

In Reactions of unknown directionality:

Not in pathways:
Cu2+ + NADH = Cu+ + NAD+ + H+
methylglyoxal + NADH + H+ = acetol + NAD+
menadione + NADH + H+ = menadiol + NAD+
a quinone + NADH = a semiquinone + NAD+
methyl red + 2 NADH + 2 H+ = anthranilate + N,N'-dimethyl-p-phenylenediamine + 2 NAD+
11-deoxycorticosterone + NADH + H+ = 4-pregnen-20,21-diol-3-one + NAD+
hybrid-cluster proteinox + NADH = hybrid-cluster proteinred + NAD+
oxidized flavorubredoxin + NADH = reduced flavorubredoxin + NAD+
L-tartrate + NAD+ = 2-hydroxy-3-oxosuccinate + NADH + H+
2-dehydro-3-deoxy-D-gluconate + NAD+ = 3-deoxy-D-glycero-2,5-hexodiulosonate + NADH + H+
an acyl-[acyl-carrier protein] + NAD+ = a trans-2-enoyl-[acyl-carrier protein] + NADH + H+
3-hydroxy-5-cis-tetradecenoyl-CoA + NAD+ = 3-keto-5-cis-tetradecenoyl-CoA + NADH + H+
2 a reduced [2Fe-2S] ferredoxin + NAD+ + H+ = 2 an oxidized [2Fe-2S] ferredoxin + NADH
a [lipoyl-carrier protein] N6-dihydrolipoyl-L-lysine + NAD+ = a [lipoyl-carrier protein] N6-lipoyl-L-lysine + NADH + H+
cholate + NAD+ = 3α,12α-dihydroxy-7-oxo-5β-cholan-24-oate + NADH + H+
2-deoxygluconate + NAD+ = 3-dehydro-2-deoxy-D-gluconate + NADH + H+


L-quinate + NAD(P)+ = 3-dehydroquinate + NAD(P)H + H+
reduced riboflavin + NAD(P)+ = riboflavin + NAD(P)H + 2 H+
a 5,6,7,8-tetrahydropteridine + NAD(P)+ = a 6,7-dihydropteridine + NAD(P)H + H+
2,5-didehydro-D-gluconate + NAD(P)H + H+ = 2-keto-L-gulonate + NAD(P)+

In Redox half-reactions:
NAD+[in] + H+[in] + 2 e- → NADH[in]

Enzymes activated by NAD+, sorted by the type of activation, are:

Activator (Mechanism unknown) of: acetaldehyde dehydrogenase [Shone81] , α-galactosidase [Burstein71, Comment 1]

Enzymes inhibited by NAD+, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: malate:quinone oxidoreductase [Narindrasorasak79] , NADH:ubiquinone oxidoreductase [Euro09a] , D-mannonate oxidoreductase [Portalier72b, MandrandBerthel77] , L-aspartate oxidase [Griffith75, Nasu82, Tedeschi99, Comment 2]

Inhibitor (Uncompetitive) of: malate dehydrogenase, NAD-requiring [Wang07]

Inhibitor (Allosteric) of: citrate synthase

Inhibitor (Mechanism unknown) of: glutaminase B [Prusiner76a] , 3-dehydroquinate synthase , nitrite reductase [Comment 3] , pyruvate dehydrogenase [Graham89, Comment 4]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: monoacetylchitobiose-6-phosphate hydrolase , 6-phospho-β-D-glucosyl-(1,4)-D-glucose glucohydrolase , UDP-glucose 4-epimerase , dTDP-glucose 4,6-dehydratase , dTDP-glucose 4,6-dehydratase , 3-dehydroquinate synthase , pyruvate formate-lyase deactivase


References

Burstein71: Burstein C, Kepes A (1971). "The alpha-galactosidase from Escherichia coli K12." Biochim Biophys Acta 1971;230(1);52-63. PMID: 5543331

Euro09a: Euro L, Belevich G, Bloch DA, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2009). "The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli." Biochim Biophys Acta 1787(1);68-73. PMID: 19061856

Graham89: Graham LD, Packman LC, Perham RN (1989). "Kinetics and specificity of reductive acylation of lipoyl domains from 2-oxo acid dehydrogenase multienzyme complexes." Biochemistry 1989;28(4);1574-81. PMID: 2655695

Griffith75: Griffith GR, Chandler JL, Gholson RK (1975). "Studies on the de novo biosynthesis of NAD in Escherichia coli. The separation of the nadB gene product from the nadA gene product and its purification." Eur J Biochem 54(1);239-45. PMID: 238844

Jackson81a: Jackson RH, Cole JA, Cornish-Bowden A (1981). "The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction." Biochem J 1981;199(1);171-8. PMID: 6279095

MandrandBerthel77: Mandrand-Berthelot MA, Lagarde AE (1977). ""Hit-and-run" mechanism for D-glucuronate reduction catalyzed by D-mannonate:NAD oxidoreductase of Escherichia coli." Biochim Biophys Acta 1977;483(1);6-23. PMID: 195622

Nagao88: Nagao Y, Nakada T, Imoto M, Shimamoto T, Sakai S, Tsuda M, Tsuchiya T (1988). "Purification and analysis of the structure of alpha-galactosidase from Escherichia coli." Biochem Biophys Res Commun 1988;151(1);236-41. PMID: 2831880

Narindrasorasak79: Narindrasorasak S, Goldie AH, Sanwal BD (1979). "Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli." J Biol Chem 1979;254(5);1540-5. PMID: 368072

Nasu82: Nasu S, Wicks FD, Gholson RK (1982). "L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase." J Biol Chem 1982;257(2);626-32. PMID: 7033218

Portalier72b: Portalier RC (1972). "[D-mannonate: NAD-oxidoreductase from Escherichia coli K12. Kinetic studies of the enzymatic mechanism]." Eur J Biochem 1972;30(2);220-33. PMID: 4351435

Prusiner76a: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Shone81: Shone CC, Fromm HJ (1981). "Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli." Biochemistry 1981;20(26);7494-501. PMID: 7034777

Tedeschi99: Tedeschi G, Negri A, Ceciliani F, Mattevi A, Ronchi S (1999). "Structural characterization of l-aspartate oxidase and identification of an interdomain loop by limited proteolysis." Eur J Biochem 260(3);896-903. PMID: 10103021

Wang07: Wang J, Tan H, Zhao ZK (2007). "Over-expression, purification, and characterization of recombinant NAD-malic enzyme from Escherichia coli K12." Protein Expr Purif 53(1):97-103. PMID: 17215140


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Mon Nov 24, 2014, biocyc14.