Escherichia coli K-12 substr. MG1655 Compound: AMP

Synonyms: 5'-AMP, adenosine-monophosphate, adenylic acid, adenosine 5'-phosphate, adenosine 5'-monophosphate, adenylate, 5'-adenylic acid, 5'-adenosine monophosphate

Superclasses: a nucleic acid component
a nucleic acid component a nucleotide a nucleoside 5'-monophosphate a ribonucleoside 5'-monophosphate a purine ribonucleoside 5'-monophosphate
a nucleic acid component a nucleotide a purine nucleotide a purine ribonucleotide a purine ribonucleoside 5'-monophosphate
a nucleic acid component a nucleotide a ribonucleotide a purine ribonucleotide a purine ribonucleoside 5'-monophosphate
a nucleic acid component a nucleotide a ribonucleotide a ribonucleoside 5'-monophosphate a purine ribonucleoside 5'-monophosphate
an organic heterocyclic compound an organic heterobicyclic compound a purine a purine nucleotide a purine ribonucleotide a purine ribonucleoside 5'-monophosphate
an organic heterocyclic compound an organonitrogen heterocyclic compound a purine a purine nucleotide a purine ribonucleotide a purine ribonucleoside 5'-monophosphate

Chemical Formula: C10H12N5O7P

Molecular Weight: 345.21 Daltons

Monoisotopic Molecular Weight: 347.0630843401 Daltons

AMP compound structure

SMILES: C(C3(C(C(C(N2(C1(=C(C(=NC=N1)N)N=C2)))O3)O)O))OP([O-])([O-])=O

InChI: InChI=1S/C10H14N5O7P/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(22-10)1-21-23(18,19)20/h2-4,6-7,10,16-17H,1H2,(H2,11,12,13)(H2,18,19,20)/p-2/t4-,6-,7-,10-/m1/s1


Unification Links: CAS:61-19-8 , ChEBI:456215 , ChemSpider:10239183 , HMDB:HMDB00045 , IAF1260:33534 , KEGG:C00020 , MetaboLights:MTBLC456215 , NCI:20264 , PubChem:15938965

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -257.9

Reactions known to consume the compound:

adenosine nucleotides degradation II :
AMP + H2O → adenosine + phosphate

adenosine nucleotides degradation III :
AMP + H2O → D-ribofuranose 5-phosphate + adenine

adenosine ribonucleotides de novo biosynthesis :

Not in pathways:

Not in pathways:
a ribonucleoside 5'-monophosphate + H2O → a ribonucleoside + phosphate

Not in pathways:
a nucleoside 5'-monophosphate[periplasmic space] + H2O[periplasmic space] → a nucleoside[periplasmic space] + phosphate[periplasmic space]

Reactions known to produce the compound:

1,4-dihydroxy-2-naphthoate biosynthesis I :
ATP + 2-succinylbenzoate + coenzyme A → AMP + 4-(2'-carboxyphenyl)-4-oxobutyryl-CoA + diphosphate

2-methylcitrate cycle I :
propanoate + ATP + coenzyme A → propanoyl-CoA + AMP + diphosphate

6-hydroxymethyl-dihydropterin diphosphate biosynthesis I :
6-hydroxymethyl-7,8-dihydropterin + ATP → 6-hydroxymethyl-7,8-dihydropterin diphosphate + AMP + H+

acetate conversion to acetyl-CoA :
acetate + ATP + coenzyme A → acetyl-CoA + AMP + diphosphate

adenine and adenosine salvage II :
AMP + diphosphate ← 5-phospho-α-D-ribose 1-diphosphate + adenine

adenosine ribonucleotides de novo biosynthesis :
adenylo-succinate → fumarate + AMP

biotin-carboxyl carrier protein assembly :
a [biotin-carboxyl-carrier protein monomer] + biotin + ATP → AMP + a biotinylated [BCCP monomer] + diphosphate + H+

citrate lyase activation :
[a holo citrate lyase acyl-carrier protein] + acetate + ATP → an acetyl-[holo citrate lyase acyl-carrier protein] + AMP + diphosphate

enterobactin biosynthesis :
a holo-[EntF peptidyl-carrier protein] + L-seryl-adenylate → a seryl-[EntF peptidyl-carrier protein] + AMP + H+
2,3-dihydroxybenzoyl adenylate + a holo-[EntB isochorismatase/aryl-carrier protein] → a 2,3-dihydroxybenzoyl-[EntB isochorismatase/aryl-carrier protein] + AMP + H+

fatty acid β-oxidation I :
a 2,3,4-saturated fatty acid + ATP + coenzyme A → a 2,3,4-saturated fatty acyl CoA + AMP + diphosphate

gluconeogenesis I , glycolysis I (from glucose 6-phosphate) , glycolysis II (from fructose 6-phosphate) :
pyruvate + ATP + H2O → phosphoenolpyruvate + AMP + phosphate + 2 H+

guanosine ribonucleotides de novo biosynthesis :
L-glutamine + XMP + ATP + H2O → L-glutamate + GMP + AMP + diphosphate + 2 H+

L-arginine biosynthesis I (via L-ornithine) :
L-aspartate + L-citrulline + ATP → L-arginino-succinate + AMP + diphosphate + H+

L-asparagine biosynthesis I :
L-glutamine + L-aspartate + ATP + H2O → L-glutamate + L-asparagine + AMP + diphosphate + H+

L-asparagine biosynthesis II :
L-aspartate + ammonium + ATP → L-asparagine + AMP + diphosphate + H+

L-carnitine degradation I :
L-carnitine + ATP + coenzyme A → L-carnitinyl-CoA + AMP + diphosphate

L-selenocysteine biosynthesis I (bacteria) :
selenide + ATP + H2O → selenophosphate + AMP + phosphate
a tRNAsec + L-serine + ATP + H+ → an L-seryl-[tRNAsec] + AMP + diphosphate

lipoate biosynthesis and incorporation II :
a [lipoyl-carrier protein]-L-lysine + octanoate + ATP → a [lipoyl-carrier protein] N6-octanoyl-L-lysine + AMP + diphosphate + H+

lipoate salvage I :
lipoyl-adenylate + a [lipoyl-carrier protein]-L-lysine → a [lipoyl-carrier protein] N6-lipoyl-L-lysine + AMP + 2 H+

molybdenum cofactor biosynthesis :
molybdopterin adenine dinucleotide + molybdate + H+AMP + MoO2-molybdopterin cofactor + H2O
a carboxy-adenylated small subunit of molybdopterin synthase + an [L-cysteine desulfurase] L-cysteine persulfide + an reduced unknown electron acceptor → a thiocarboxylated small subunit of molybdopterin synthase + an [L-cysteine desulfurase]-L-cysteine + AMP + an oxidized unknown electron acceptor + H+

NAD biosynthesis I (from aspartate) :
ATP + nicotinate adenine dinucleotide + L-glutamine + H2O → AMP + L-glutamate + NAD+ + diphosphate + H+
ammonium + ATP + nicotinate adenine dinucleotide → AMP + NAD+ + diphosphate + H+

In Reactions of unknown directionality:

Not in pathways:
ThiS-COAMP + L-cysteine = ThiS-COSH + L-alanine + AMP
protein chain elongation factor EF-P + (R)-β-lysine + ATP = protein chain elongation factor EF-P, β-lysyl-Lys34 + AMP + diphosphate
lipoyl-adenylate + [glycine cleavage system lipoyl-carrier protein]-L-lysine = a [glycine-cleavage complex H protein] N6-lipoyl-L-lysine + AMP + 2 H+
O-carbamoyladenylate + HypE = a HypE hydrogenase maturation protein-S-carboxamide + AMP

Enzymes activated by AMP, sorted by the type of activation, are:

Activator (Allosteric) of: threonine dehydratase [Shizuta69] , serine deaminase [Shizuta69] , pyruvate kinase [Kotlarz75, Somani77]

Activator (Mechanism unknown) of: glutaminase B [Prusiner76] , glycogen phosphorylase [Yu88, Chen68, Chen68a] , isocitrate dehydrogenase phosphatase [Nimmo84, Miller00] , CTP:2,3,4-saturated L-phosphatidate cytidylyltransferase [Langley78, Comment 1]

Enzymes inhibited by AMP, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: malate:quinone oxidoreductase [Narindrasorasak79] , ATP phosphoribosyltransferase [Tebar76] , acetaldehyde dehydrogenase [Shone81, Comment 2] , FMN reductase [Fieschi95, Comment 3] , adenine phosphoribosyltransferase [HochstadtOzer71, Comment 4] , amidophosphoribosyl transferase [Messenger79, Comment 5] , selenide, water dikinase [Veres94, Comment 6] , asparagine synthetase [Cedar69, Comment 7]

Inhibitor (Uncompetitive) of: ribose-phosphate diphosphokinase [Bower89, Willemoes97]

Inhibitor (Noncompetitive) of: arginyl-tRNA synthetase [Charlier79] , fructose-1,6-bisphosphatase [Babul83] , FMN reductase [Fieschi95, Comment 8] , thiamin monophosphate kinase

Inhibitor (Allosteric) of: glucose-1-phosphate adenylyltransferase [Hill91, Gardiol90]

Inhibitor (Mechanism unknown) of: riboflavin reductase [Fieschi95, Niviere99] , acetyl-CoA synthetase (AMP-forming) [Barak04] , NAD+ synthetase, NH3-dependent [Spencer67, Comment 9] , glutamine synthetase [Woolfolk67, Bender77, Comment 10] , phosphoenolpyruvate synthetase [Cooper69, Chulavatnatol73] , guanylate kinase [Oeschger66] , acetaldehyde dehydrogenase [Shone81, Comment 11] , isocitrate dehydrogenase kinase [Nimmo84, Miller00] , ribose-5-phosphate isomerase A [Essenberg75a]

This compound has been characterized as an alternative substrate of the following enzymes: alkaline phosphatase , 5'-nucleotidase

In Growth Media: PMA phosphorus source test + AMP


Babul83: Babul J, Guixe V (1983). "Fructose bisphosphatase from Escherichia coli. Purification and characterization." Arch Biochem Biophys 1983;225(2);944-9. PMID: 6312898

Barak04: Barak R, Prasad K, Shainskaya A, Wolfe AJ, Eisenbach M (2004). "Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli." J Mol Biol 342(2);383-401. PMID: 15327942

Bender77: Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977). "Biochemical parameters of glutamine synthetase from Klebsiella aerogenes." J Bacteriol 129(2);1001-9. PMID: 14104

Bower89: Bower SG, Harlow KW, Switzer RL, Hove-Jensen B (1989). "Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site." J Biol Chem 1989;264(17);10287-91. PMID: 2542328

Cedar69: Cedar H, Schwartz JH (1969). "The asparagine synthetase of Escherichia coli. II. Studies on mechanism." J Biol Chem 1969;244(15);4122-7. PMID: 4895362

Charlier79: Charlier J, Gerlo E (1979). "Arginyl-tRNA synthetase from Escherichia coli K12. Purification, properties, and sequence of substrate addition." Biochemistry 18(14);3171-8. PMID: 37899

Chen68: Chen GS, Segel IH (1968). "Escherichia coli polyglucose phosphorylases." Arch Biochem Biophys 1968;127(1);164-74. PMID: 4878694

Chen68a: Chen GS, Segel IH (1968). "Purification and properties of glycogen phosphorylase from Escherichia coli." Arch Biochem Biophys 1968;127(1);175-86. PMID: 4878695

Chulavatnatol73: Chulavatnatol M, Atkinson DE (1973). "Phosphoenolpyruvate synthetase from Escherichia coli. Effects of adenylate energy charge and modifier concentrations." J Biol Chem 248(8);2712-5. PMID: 4572511

Cooper69: Cooper RA, Kornberg HL "Phosphoenolpyruvate Synthetase." Methods Enzymol. 1969;13:309-314.

Essenberg75a: Essenberg MK, Cooper RA (1975). "Two ribose-5-phosphate isomerases from Escherichia coli K-12: partial chacterisation of the enzymes and consideration of their possible physiological roles." Eur J Biochem 1975;55:323-332. PMID: 1104357

Fieschi95: Fieschi F, Niviere V, Frier C, Decout JL, Fontecave M (1995). "The mechanism and substrate specificity of the NADPH:flavin oxidoreductase from Escherichia coli." J Biol Chem 1995;270(51);30392-400. PMID: 8530465

Gardiol90: Gardiol A, Preiss J (1990). "Escherichia coli E-39 ADPglucose synthetase has different activation kinetics from the wild-type allosteric enzyme." Arch Biochem Biophys 280(1);175-80. PMID: 2162151

Hill91: Hill MA, Kaufmann K, Otero J, Preiss J (1991). "Biosynthesis of bacterial glycogen. Mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from Escherichia coli." J Biol Chem 266(19);12455-60. PMID: 1648099

HochstadtOzer71: Hochstadt-Ozer J, Stadtman ER (1971). "The regulation of purine utilization in bacteria. I. Purification of adenine phosphoribosyltransferase from Escherichia coli K12 and control of activity by nucleotides." J Biol Chem 246(17);5294-303. PMID: 4328693

Kotlarz75: Kotlarz D, Garreau H, Buc H (1975). "Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli." Biochim Biophys Acta 381(2);257-68. PMID: 122902

Langley78: Langley KE, Kennedy EP (1978). "Partial purification and properties of CTP:phosphatidic acid cytidylyltransferase from membranes of Escherichia coli." J Bacteriol 1978;136(1);85-95. PMID: 30751

Messenger79: Messenger LJ, Zalkin H (1979). "Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Purification and properties." J Biol Chem 1979;254(9);3382-92. PMID: 372191

Miller00: Miller SP, Chen R, Karschnia EJ, Romfo C, Dean A, LaPorte DC (2000). "Locations of the regulatory sites for isocitrate dehydrogenase kinase/phosphatase." J Biol Chem 275(2);833-9. PMID: 10625615

Narindrasorasak79: Narindrasorasak S, Goldie AH, Sanwal BD (1979). "Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli." J Biol Chem 1979;254(5);1540-5. PMID: 368072

Nimmo84: Nimmo GA, Nimmo HG (1984). "The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase." Eur J Biochem 1984;141(2);409-14. PMID: 6329757

Niviere99: Niviere V, Fieschi F, Decout JL, Fontecave M (1999). "The NAD(P)H:flavin oxidoreductase from Escherichia coli. Evidence for a new mode of binding for reduced pyridine nucleotides." J Biol Chem 274(26);18252-60. PMID: 10373427

Oeschger66: Oeschger MP, Bessman MJ (1966). "Purification and properties of guanylate kinase from Escherichia coli." J Biol Chem 1966;241(22);5452-60. PMID: 5333666

Prusiner76: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Shizuta69: Shizuta Y, Nakazawa A, Tokushige M, Hayaishi O (1969). "Studies on the interaction between regulatory enzymes and effectors. 3. Crystallization and characterization of adenosine 5'-monophosphate-dependent threonine deaminase from Escherichia coli." J Biol Chem 244(7);1883-9. PMID: 4889010

Shone81: Shone CC, Fromm HJ (1981). "Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli." Biochemistry 1981;20(26);7494-501. PMID: 7034777

Somani77: Somani BL, Valentini G, Malcovati M (1977). "Purification and molecular properties of the AMP-activated pyruvate kinase from Escherichia coli." Biochim Biophys Acta 482(1);52-63. PMID: 193572

Spencer67: Spencer RL, Preiss J (1967). "Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphospyridine nucleotide synthetase from Escherichia coli b." J Biol Chem 1967;242(3);385-92. PMID: 4290215

Tebar76: Tebar AR, Ballesteros AO (1976). "Kinetic properties of ATP phosphoribosyltransferase of Escherichia coli." Mol Cell Biochem 11(3);131-6. PMID: 781521

Veres94: Veres Z, Kim IY, Scholz TD, Stadtman TC (1994). "Selenophosphate synthetase. Enzyme properties and catalytic reaction." J Biol Chem 269(14);10597-603. PMID: 8144648

Veres94a: Veres, Z, Kim, IY, Scholz, TD, Stadtman, TC "Selenophosphate synthetase Enzyme properties and catalytic reaction." The Journal of Biological Chemistry 269:10597-10603 (1994).

Walker98: Walker H, Ferretti JA, Stadtman TC (1998). "Isotope exchange studies on the Escherichia coli selenophosphate synthetase mechanism." Proc Natl Acad Sci U S A 1998;95(5);2180-5. PMID: 9482859

Willemoes97: Willemoes M, Hove-Jensen B (1997). "Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase." Biochemistry 36(16);5078-83. PMID: 9125530

Woolfolk67: Woolfolk CA, Stadtman ER (1967). "Regulation of glutamine synthetase. 3. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli." Arch Biochem Biophys 118(3);736-55. PMID: 4860415

Yu88: Yu F, Jen Y, Takeuchi E, Inouye M, Nakayama H, Tagaya M, Fukui T (1988). "Alpha-glucan phosphorylase from Escherichia coli. Cloning of the gene, and purification and characterization of the protein." J Biol Chem 1988;263(27);13706-11. PMID: 3047129

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 19.0 on Tue Oct 6, 2015, biocyc13.