Aquifex aeolicus VF5 Pathways Class: Aerobic Respiration

Like fermentation, respiration is a process by which electrons are passed from an electron donor to a terminal electron acceptor. However, in respiration the electrons do not pass directly from the donor to the acceptor. Instead, they pass a number of membrane-bound electron carriers that function as a transport chain, passing the electrons from one to another in steps that follow the electrochemical gradients between the electron donor and the acceptor.

Each oxidized member of the electron transfer chain (which can be a flavoprotein, an electron-transfer quinone, a cytochrome, or other type of electron carrier) can be reduced by the reduced form of the preceding member, and the electrons flow through the chain all the way to the terminal acceptor, which could be oxygen in the case of aerobic respiration, or another type of molecule in anaerobic respiration.

Known terminal acceptors involved in anaerobic respiration include organic compounds ( fumarate, dimethyl sulfoxide, or trimethylamine N-oxide), or inorganic compounds ( nitrate, nitrite, nitrous oxide, chlorate, perchlorate, oxidized manganese ions, ferric iron, gold, selenate, arsenate, sulfate and elemental sulfur).

During the process of electron transfer, a proton gradient is formed across the membrane due to three potential processes

1. The use of some of the energy associated with the electron transfer for active pumping of protons out of the cell.

2. Exporting protons out of the cell during electron-to-hydrogen transfers.

3. Scalar reactions that consume protons inside the cell, or produce them outside the cell, without actually moving a proton from one compartment to another.

Upon passage of protons back into the cytoplasm, they drive multisubunit ATP synthase enzymes that generate ATP.

This class, which stands for aerobic respiration, contains pathways through which electrons flow from various organic and inorganic electron donors to oxygen as the terminal electron acceptor.

Parent Classes:

Child Classes:
Tetrathionate Oxidation (0)

aerobic respiration (cytochrome c),
NADH to cytochrome bd oxidase electron transfer

Report Errors or Provide Feedback
Page generated by Pathway Tools version 19.5 (software by SRI International) on Sat Nov 28, 2015, biocyc11.